am-630 and Seizures

am-630 has been researched along with Seizures* in 5 studies

Other Studies

5 other study(ies) available for am-630 and Seizures

ArticleYear
CB2R induces a protective response against epileptic seizures through ERK and p38 signaling pathways.
    The International journal of neuroscience, 2021, Volume: 131, Issue:8

    Epilepsy is a pivotal neurological disorder characterized by the synchronous discharging of neurons to induce momentary brain dysfunction. Temporal lobe epilepsy is the most common type of epilepsy, with seizures originating from the mesial temporal lobe. The hippocampus forms part of the mesial temporal lobe and plays a significant role in epileptogenesis; it also has a vital influence on the mental development of children. In this study, we aimed to explore the effects of CB2 receptor (CB2R) activation on ERK and p38 signaling in nerve cells of a rat epilepsy model.. We treated Sprague-Dawley rats with pilocarpine to induce an epilepsy model and treated such animals with a CB2R agonist (JWH133) alone or with a CB2R antagonist (AM630). Nissl's stain showed the neuron conditon in different groups. Western blot analyzed the level of p-ERK and p-p38.. JWH133 can increase the latent period of first seizure attack and decrease the Grades IV-V magnitude ratio after the termination of SE. Nissl's stain showed JWH133 protected neurons in the hippocampus while AM630 inhibited the functioning of CB2R in neurons. Western blot analysis showed that JWH133 decreased levels of p-ERK and p-p38, which is found at increased levels in the hippocampus of our epilepsy model. In contrast, AM630 inhibited the protective function of JWH133 and also enhanced levels of p-ERK and p-p38.. CB2R activation can induce neurons proliferation and survival through activation of ERK and p38 signaling pathways.

    Topics: Animals; Cannabinoids; Epilepsy; Hippocampus; Indoles; Male; MAP Kinase Signaling System; Neurons; p38 Mitogen-Activated Protein Kinases; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Seizures; Signal Transduction

2021
Allosteric modulation of the cannabinoid 2 receptor confers seizure resistance in mice.
    Neuropharmacology, 2021, 05-01, Volume: 188

    Mounting evidence suggests that modulation of cannabinoid 2 receptors (CB2Rs) is therapeutic in mouse models of neurological disorders, including neuropathic pain, neurodegenerative disease, and stroke. We previously showed that reducing CB2R activity increases seizure susceptibility in mice. In the present study, we evaluated the therapeutic potential of the CB2R positive allosteric modulator, Ec21a, against induced seizures in mice. The pharmacokinetic profile of Ec21 demonstrated a similar distribution in brain and plasma, with detection up to 12 h following injection. Ec21a increased resistance to induced seizures in CF1 wild-type mice and mice harboring the SCN1A R1648H human epilepsy mutation. A rotarod test provided evidence that Ec21a does not cause neurotoxicity-induced motor deficits at its therapeutic dose, and seizure protection was maintained with repeated drug administration. The selectivity of Ec21a for CB2R was supported by the ability of the CB2R antagonist AM630, but not the CB1R antagonist AM251, to block Ec21a-conferred seizure protection in mice, and a lack of significant binding of Ec21a to 34 brain-expressed receptors and transporters in vitro. These results identify allosteric modulation of CB2Rs as a promising therapeutic approach for the treatment of epilepsy.

    Topics: Allosteric Regulation; Animals; Benzeneacetamides; Cannabinoids; Indoles; Male; Mice; Mice, Transgenic; Piperidines; Pyrazoles; Pyridines; Receptor, Cannabinoid, CB2; Rotarod Performance Test; Seizures

2021
The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors.
    Brain research bulletin, 2021, Volume: 170

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most recognized omega-3 unsaturated fatty acids showing neuroprotective activity in animal and clinical studies. Docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA) are non-oxygenated endogenous metabolites of DHA and EPA, which might be in charge of the anti-seizure activity of the parent molecules. We examined the effect of these metabolites on the threshold of clonic seizures induced by pentylenetetrazole (PTZ). DHEA and EPEA possess similar chemical structure to the endogenous cannabinoids. Therefore, involvement of cannabinoid (CB) receptors in the anti-seizure effect of these metabolites was also investigated. DHA, DHEA, EPEA, AM251 (CB1 receptor antagonist), and AM630 (CB2 receptor antagonist) were administered to mice by intracerebroventricular (i.c.v.) route. Threshold of clonic seizures was determined 10 and/or 15 min thereafter by intravenous infusion of PTZ. The effect of DHA and DHEA on seizure threshold was then determined in mice, which were pretreated with AM251 and/or AM630. DHA (300μM), and DHEA (100 and 300 μM) significantly increased seizure threshold, 15 (p < 0.05) and 10 min (p < 0.01) after administration, respectively. DHEA was more potent than its parent lipid, DHA in decreasing seizure susceptibility. EPEA (300 and 1000 μM) did not change seizure threshold. AM251 fully prevented the increasing effect of DHA and DHEA on seizure threshold (p < 0.05). AM630 did not inhibit the effect of DHA and DHEA on seizure threshold. This is the first report indicating that DHEA but not EPEA, possesses anti-seizure action via activating CB1 receptors. DHEA is more potent than its parent ω-3 fatty acid DHA in diminishing seizure susceptibility.

    Topics: Animals; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Docosahexaenoic Acids; Fatty Acids, Omega-3; Indoles; Male; Mice; Pentylenetetrazole; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Seizures

2021
CB2 receptors modulate seizure-induced expression of pro-inflammatory cytokines in the hippocampus but not neocortex.
    Molecular neurobiology, 2021, Volume: 58, Issue:8

    We compared neuroinflammatory responses induced by nonconvulsive and convulsive seizures and analyzed the role that may be played by cannabinoid CB2 receptors in the neuroinflammatory response induced by generalized tonic-clonic seizures (GTCS). Using quantitative PCR, we analyzed expression of interleukin-1b, CCL2, interleukin-6, tumor necrosis factor (TNF), transforming growth factor beta 1 (TGFb1), fractalkine, and cannabinoid receptor type 2 in the neocortex, dorsal and ventral hippocampus, cortical leptomeninges, dura mater, and spleen in 3 and 6 h after induction of GTCS by a high dose of pentylenetetrazole (PTZ, 70 mg/kg) and absence-like activity by a low dose of PTZ (30 mg/kg). The low dose of PTZ had no effect on the gene expression 3 and 6 h after PTZ injection. In 3 and 6 h after high PTZ dose, the expression of CCL2 and TNF increased in the neocortex. Both ventral and dorsal parts of the hippocampus responded to seizures by elevation of CCL2 expression 3 h after PTZ. Cortical leptomeninges but not dura mater also had elevated CCL2 level and decreased TGFb1 expression 3 h after GTCS. Activation of CB2 receptors by HU308 suppressed an inflammatory response only in the dorsal hippocampus but not neocortex. Suppression of CB2 receptors by AM630 potentiated expression of inflammatory cytokines also in the hippocampus but not in the neocortex. Thus, we showed that GTCS, but not the absence-like activity, provoke inflammatory response in the neocortex, dorsal and ventral hippocampus, and cortical leptomeninges. Modulation of CB2 receptors changes seizure-induced neuroinflammation only in the hippocampus but not neocortex.

    Topics: Animals; Cannabinoid Receptor Agonists; Cannabinoids; Cytokines; Electroencephalography; Hippocampus; Indoles; Inflammation Mediators; Male; Neocortex; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Seizures

2021
Cannabidiol, a Cannabis sativa constituent, inhibits cocaine-induced seizures in mice: Possible role of the mTOR pathway and reduction in glutamate release.
    Neurotoxicology, 2015, Volume: 50

    Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa, has therapeutic potential for certain psychiatric and neurological disorders. Studies in laboratory animals and limited human trials indicate that CBD has anticonvulsant and neuroprotective properties. Its effects against cocaine neurotoxicity, however, have remained unclear. Thus, the present study tested the hypothesis that CBD protects against cocaine-induced seizures and investigated the underlying mechanisms. CBD (30 mg/kg) pre-treatment increased the latency and reduced the duration of cocaine (75 mg/kg)-induced seizures in mice. The CB1 receptor antagonist, AM251 (1 and 3mg/kg), and the CB2 receptor antagonist, AM630 (2 and 4 mg/kg), failed to reverse this protective effect, suggesting that alternative mechanisms are involved. Synaptosome studies with the hippocampus of drug-treated animals revealed that cocaine increases glutamate release, whereas CBD induces the opposite effect. Finally, the protective effect of this cannabinoid against cocaine-induced seizure was reversed by rapamycin (1 and 5mg/kg), an inhibitor of the mammalian target of rapamycin (mTOR) intracellular pathway. In conclusion, CBD protects against seizures in a model of cocaine intoxication. These effects possibly occur through activation of mTOR with subsequent reduction in glutamate release. CBD should be further investigated as a strategy for alleviating psychostimulant toxicity.

    Topics: Anesthetics, Local; Animals; Antiemetics; Cannabidiol; Cocaine; Disease Models, Animal; Dose-Response Relationship, Drug; Glutamic Acid; Immunosuppressive Agents; Indoles; Male; Mice; Seizures; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases

2015