am-630 has been researched along with Myocardial-Infarction* in 2 studies
2 other study(ies) available for am-630 and Myocardial-Infarction
Article | Year |
---|---|
Cannabinoid-2 receptor activation protects against infarct and ischemia-reperfusion heart injury.
Endocannabinoid system is reported to be activated during myocardial ischemia-reperfusion (IR) injury and protects against heart injury. We, therefore, observed changes in endocannabinoids levels during acute myocardial infarction (AMI) and myocardial IR injury and evaluated the role of cannabinoid-2 (CB2) receptor in infarct and IR heart injury. In contrast to 16 control patients with normal coronary artery angiogram, the endocannabinoid 2-arachidonoylglycerol level in the infarct-side coronary artery of 23 AMI patients increased significantly, with increased reactive oxygen species and tumor necrosis factor-α levels in both infarct-side coronary artery and radial artery. Then, 35 C57BL/6J mice were made into SHAM, AMI, or IR models. AMI and IR groups were treated with CB2-selective agonist HU308 ((+)-(1aH,3H,5aH)-4-[2,6-dimethoxy-4-(1,1-dimethylheptyl)phenyl]-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbinol), with or without CB2-selective antagonist AM630 [6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone through intraperitoneal injection. Compared with the SHAM, expressions of cannabinoid CB1/CB2 receptor proteins in AMI/IR animals were upregulated; production of 2-arachidonoylglycerol and anandamide and release of reactive oxygen species and tumor necrosis factor-α also increased. HU308 significantly decreased the infarct size and the levels of reactive oxygen species and tumor necrosis factor-α in AMI/IR animals. However, these effects were blocked by AM630. In conclusion, the endocannabinoid system was activated during AMI and IR, and CB2 receptor activation produces a protective role, thus offering a novel pharmaceutical target for treating these diseases. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Case-Control Studies; Coronary Angiography; Coronary Vessels; Disease Models, Animal; Endocannabinoids; Glycerides; Humans; Indoles; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardial Reperfusion Injury; Radial Artery; Reactive Oxygen Species; Receptor, Cannabinoid, CB2; Tumor Necrosis Factor-alpha | 2012 |
2-Arachidonylglycerol acting on CB1 cannabinoid receptors mediates delayed cardioprotection induced by nitric oxide in rat isolated hearts.
Endocannabinoids have been implicated in protective effects in the heart and brain, but the mechanism of possible infarct-size-reducing effects remains controversial. Using a model of delayed preconditioning (PC), rats received the nitric oxide (NO) donor nitroglycerin (0.15 mg/h/kg) for 24 hours via transdermal application. Two days later, rat isolated perfused hearts were subjected to global, no-flow ischemia (20 min), and reperfusion (120 min). Cannabinoid receptor antagonists were given before no-flow throughout the protocol. Endocannabinoids were detected by liquid chromatography and mass spectrometry. NO-induced PC reduced the left ventricular infarct size from 40.9 +/- 3.9% to 27.5 +/- 3.8% (P < 0.05). Treatment with the specific CB1 cannabinoid receptor antagonist AM-251 (0.3 microM) prevented the protective effect of PC on infarct size (40.2 +/- 4.7%, P > 0.05 vs. controls). On the contrary, the specific CB2 receptor antagonist AM-630 (0.3 microM) did not alter infarct size (31.6 +/- 6.3%, P > 0.05 vs. PC alone). Recovery of left ventricular developed pressure and coronary flow was incomplete in control and NO-pretreated hearts and not consistently altered by cannabinoid receptor antagonists. PC increased the heart tissue content of the endocannabinoid 2-arachidonylglycerol (2-AG) from 4.6 +/- 1.0 nmol/g in controls to 12.0 +/- 2.1 nmol/g (P < 0.05). Tissue levels of the endocannabinoid arachidonylethanolamide (anandamide) remained unchanged (19.8 +/- 3.9 pmol/g vs. 19.5 +/- 4.8 pmol/g). 2-AG (1 microM) or its metabolically stable derivative noladinether (0.1 microM), given 30 minutes before ischemia/reperfusion in unpreconditioned hearts, mimicked the cardioprotective effects of PC and reduced infarct size. We conclude that delayed PC through transdermal nitroglycerin application increases the production of the endocannabinoid 2-AG which elicits protective effects against myocardial infarction via CB1 cannabinoid receptors which represents one new mechanism of NO-mediated PC. Topics: Animals; Arachidonic Acids; Blood Pressure; Cannabinoid Receptor Modulators; Coronary Vessels; Endocannabinoids; Glycerides; Heart; Heart Rate; Indoles; Ischemic Preconditioning, Myocardial; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Nitric Oxide Donors; Nitroglycerin; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Regional Blood Flow | 2006 |