am-630 and Arthralgia

am-630 has been researched along with Arthralgia* in 2 studies

Other Studies

2 other study(ies) available for am-630 and Arthralgia

ArticleYear
Tapping into the endocannabinoid system to ameliorate acute inflammatory flares and associated pain in mouse knee joints.
    Arthritis research & therapy, 2014, Sep-27, Volume: 16, Issue:5

    During the progression of rheumatoid arthritis (RA), there are frequent but intermittent flares in which the joint becomes acutely inflamed and painful. Although a number of drug therapies are currently used to treat RA, their effectiveness is variable and side effects are common. Endocannabinoids have the potential to ameliorate joint pain and inflammation, but these beneficial effects are limited by their rapid degradation. One enzyme responsible for endocannabinoid breakdown is fatty acid amide hydrolase (FAAH). The present study examined whether URB597, a potent and selective FAAH inhibitor, could alter inflammation and pain in a mouse model of acute synovitis.. Acute joint inflammation was induced in male C57BL/6 mice by intra-articular injection of 2% kaolin/2% carrageenan. After 24 hr, articular leukocyte kinetics and blood flow were used as measures of inflammation, while hindlimb weight bearing and von Frey hair algesiometry were used as measures of joint pain. The effects of local URB597 administration were then determined in the presence or absence of either the cannabinoid (CB)1 receptor antagonist AM251, or the CB2 receptor antagonist AM630.. URB597 decreased leukocyte rolling and adhesion, as well as inflammation-induced hyperaemia. However, these effects were only apparent at low doses and the effects of URB597 were absent at higher doses. In addition to the anti-inflammatory effects of URB597, fatty acid amide hydrolase (FAAH) inhibition improved both hindlimb weight bearing and von Frey hair withdrawal thresholds. The anti-inflammatory effects of URB597 on leukocyte rolling and vascular perfusion were blocked by both CB1 and CB2 antagonism, while the effect on leukocyte adherence was independent of cannabinoid receptor activation. The analgesic effects of URB597 were CB1 mediated.. These results suggest that the endocannabinoid system of the joint can be harnessed to decrease acute inflammatory reactions and the concomitant pain associated with these episodes.

    Topics: Acute Disease; Amidohydrolases; Animals; Arthralgia; Benzamides; Carbamates; Carrageenan; Endocannabinoids; Hindlimb; Hyperalgesia; Indoles; Inflammation; Kaolin; Knee Joint; Male; Mice, Inbred C57BL; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Synovitis; Weight-Bearing

2014
Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis.
    Pain, 2011, Volume: 152, Issue:5

    The present study examined whether enhancement of endogenous cannabinoid levels by administration of the fatty acid amide hydrolase inhibitor URB597 could modulate joint nociception in 2 rodent models of osteoarthritis (OA). OA-like changes were induced in male Wistar rats by intra-articular injection of monoiodoacetate, while Dunkin-Hartley guinea pigs (age 9-12 months) develop OA naturally and were used as a model of spontaneous OA. Joint nociception was measured by recording electrophysiologically from knee joint primary afferents in response to noxious hyper-rotation of the joint before and after close intra-arterial injection of URB597 (0.03 mg; 0.1 mL bolus); the CB(1) receptor antagonist AM251 (1 mg/kg intraperitoneally) or the CB(2) receptor antagonist AM630 (1 mg/kg intraperitoneally). The effect of systemic URB597 administration (5 mg/kg) on joint pain perception in the monoiodoacetate model was determined by hindlimb incapacitance. Peripheral injection of URB597 caused afferent firing rate to be significantly reduced by up to 56% in the rat OA model and by up to 69% in the guinea pig OA model. Systemic co-administration of AM251, but not AM630, abolished the antinociceptive effect of URB597 in both models. URB597 had no effect in saline-injected control rat joints or in nonarthritic guinea pigs. Systemic URB597 administration significantly reduced hindlimb incapacitance in monoiodoacetate joints and co-administration of the CB(1) antagonist abolished this effect. Local injection of URB597 into OA knee joints reduces mechanonociception and pain, and this response is mediated by CB(1) receptors. Targeting endocannabinoid-metabolizing enzymes in the peripheral nervous system could offer novel therapeutic approaches for the treatment of OA pain.

    Topics: Action Potentials; Afferent Pathways; Age Factors; Animals; Arthralgia; Benzamides; Carbamates; Diclofenac; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guinea Pigs; Indoles; Iodoacetic Acid; Male; Nociceptors; Osteoarthritis; Piperidines; Pyrazoles; Rats; Rats, Wistar; Time Factors; Weight-Bearing

2011