am-404 and Diabetic-Neuropathies

am-404 has been researched along with Diabetic-Neuropathies* in 2 studies

Other Studies

2 other study(ies) available for am-404 and Diabetic-Neuropathies

ArticleYear
Peripheral antinociceptive effect of anandamide and drugs that affect the endocannabinoid system on the formalin test in normal and streptozotocin-diabetic rats.
    Neuropharmacology, 2012, Volume: 63, Issue:8

    Diabetes is often associated with painful neuropathy. The current treatments are symptomatic and ineffective. Cannabinoids have been proposed as promising drugs for chronic pain treatment and its antinociceptive effect has already been related in nerve injury models of neuropathic pain, but little has been investigated in painful diabetic neuropathy models. Thus, the current study aims to investigate the potential antinociceptive effect of drugs that alter endocannabinoid system when injected subcutaneously into the dorsal surface of the ipsilateral hind paw in chemical hyperalgesia induced by formalin in both normoglycemic (Ngl) and streptozotocin-diabetic (Dbt) rats. Diabetic rats exhibited exaggerated flinching behaviors during first and second phases of the formalin test, indicating the presence of hyperalgesia. AM404, an anandamide (AEA) re-uptake inhibitor, AEA (an agonist of CB1/CB2 receptors) or ACEA (a selective CB1 receptor agonist) induced antinociception in both phases of formalin test in Ngl and Dbt rats. In both groups, the antinociceptive effect of ACEA was prevented by AM251, a CB1 inverse agonist while the antinociceptive effect of AEA was prevented by AM251 or AM630, a CB2 receptor antagonist. In Ngl rats, the antinociceptive effect of AM404 was prevented by AM251 or capsazepine only during first phase of the formalin test while in Dbt rats, this effect was blocked by pretreatment with AM251 (both phases) or AM630 (second phase). Taken together, these results demonstrated broad-spectrum antinociceptive properties of cannabinoids in a model of painful diabetic neuropathy. Peripheral activation of both cannabinoid receptors seems to mediate the antinociceptive effect of exogenous or endogenous anandamide.

    Topics: Analgesics; Animals; Arachidonic Acids; Behavior, Animal; Capsaicin; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Endocannabinoids; Formaldehyde; Hyperalgesia; Indoles; Male; Pain Measurement; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Cannabinoid

2012
Effects of the endocannabinoid transport inhibitors AM404 and UCM707 on diabetic neuropathy in rats.
    Clinical and experimental pharmacology & physiology, 2009, Volume: 36, Issue:11

    1. Diabetic rats display increased pain responses following injection of formalin into the paw, suggesting the presence of hyperalgesia. In the present study, we investigated the efficacy of the systemic administration of the endocannabinoid transport inhibitors UCM707 and AM404 (1, 10 and 50 mg/kg, i.p.) on hyperalgesia during the formalin test in streptozocin (STZ)-induced diabetic rats. 2. Nociceptive testing was performed in male adult Wistar rats 4 weeks after the onset of hyperglycaemia. At the end of the experiment, all rats were weighed and then underwent plasma glucose measurements. 3. Diabetes caused significant hyperalgesia during both phases of the formalin test. At 10 and 50 mg/kg, both UCM707 and AM404 reversed chemical hyperalgesia in diabetic rats. UCM707 (10 and 50 mg/kg) caused less intensive nociceptive behaviour during both phases of the test, whereas AM404 (10 and 50 mg/kg) only affected pain scores during Phase 1 of the formalin test. At 1 mg, neither drug had any effect on pain behaviour in control and diabetic groups compared with their respective controls. Neither UCM707 nor AM404 had any effect on bodyweight or plasma glucose levels of treated compared with non-treated rats at any of the doses tested. 4. The results of the present study indicate that systemic administration of UCM707 and AM404 is effective in ameliorating chemical hyperalgesia in STZ-diabetic rats. Thus, endocannabinoid transport inhibitors may have potential in the treatment of painful diabetic neuropathy.

    Topics: Animals; Arachidonic Acids; Blood Glucose; Body Weight; Cannabinoid Receptor Modulators; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Dose-Response Relationship, Drug; Endocannabinoids; Furans; Hyperalgesia; Hyperglycemia; Male; Pain; Pain Measurement; Plasma Membrane Neurotransmitter Transport Proteins; Polyunsaturated Alkamides; Rats

2009