am-356 has been researched along with Prostatic-Neoplasms* in 5 studies
5 other study(ies) available for am-356 and Prostatic-Neoplasms
Article | Year |
---|---|
Proapoptotic effect of endocannabinoids in prostate cancer cells.
In the early stages, prostate cancer is androgen‑ dependent; therefore, medical castration has shown significant results during the initial stages of this pathology. Despite this early effect, advanced prostate cancer is resilient to such treatment. Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies. The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs. In order to do this, we used a commercial cell line and primary cultures derived from prostate cancer and benign prostatic hyperplasia. The presence of the CB1 and CB2 receptors was determined by immunohistochemistry where we showed a higher expression of these receptors in later stages of the disease (samples with a high Gleason score). Later, treatments were conducted using anandamide, 2-arachidonoyl glycerol and a synthetic analog of anandamide, methanandamide. Using the MTT assay, we proved that the treatments produced a cell growth inhibitory effect on all the different prostate cancer cultures. This effect was demonstrated to be dose-dependent. The use of a specific CB1 receptor blocker (SR141716) confirmed that this effect was produced primarily from the activation of the CB1 receptor. In order to understand the MTT assay results, we determined cell cycle distribution by flow cytometry, which showed no variation at the different cell cycle stages in all the cultures after treatment. Treatment with endocannabinoids resulted in an increase in the percentage of apoptotic cells as determined by Annexin V assays and caused an increase in the levels of activated caspase-3 and a reduction in the levels of Bcl-2 confirming that the reduction in cell viability noted in the MTT assay was caused by the activation of the apoptotic pathway. Finally, we observed that endocannabinoid treatment activated the Erk pathway and at the same time, produced a decrease in the activation levels of the Akt pathway. Based on these results, we suggest that endocannabinoids may be a beneficial option for the treatment of prostate cancer that has become nonresponsive to common therapies. Topics: Adenocarcinoma; Apoptosis; Arachidonic Acids; Cell Cycle; Drug Screening Assays, Antitumor; Endocannabinoids; Glycerides; Humans; Male; MAP Kinase Signaling System; Neoplasm Proteins; Piperidines; Polyunsaturated Alkamides; Prostatic Hyperplasia; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Signal Transduction; Tumor Cells, Cultured | 2015 |
Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: involvement of CB2.
We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB(1) and CB(2)). In this study, we investigated the role of CB(2) receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.. The human prostate cancer cell lines, namely PC-3, DU-145 and LNCaP, were used for this study. Cell proliferation was measured using MTT proliferation assay, [(3)H]-thymidine incorporation assay and cell-cycle study by flow cytometry. Ceramide quantification was performed using the DAG kinase method. The CB(2) receptor was silenced with specific small interfering RNA, and was blocked pharmacologically with SR 144528. In vivo studies were conducted by the induction of prostate xenograft tumours in nude mice.. We found that the anandamide analogue, R(+)-Methanandamide (MET), as well as JWH-015, a synthetic CB(2) agonist, exerted anti-proliferative effects in PC-3 cells. R(+)-Methanandamide- and JWH-015-induced cell death was rescued by treatment with the CB(2) receptor antagonist, SR 144528. Downregulation of CB(2) expression reversed the effects of JWH-015, confirming the involvement of CB(2) in the pro-apoptotic effect of cannabinoids. Further analysing the mechanism of JWH-015-induced cell growth inhibition, we found that JWH-015 triggered a de novo synthesis of ceramide, which was involved in cannabinoid-induced cell death, insofar as blocking ceramide synthesis with Fumonisin B1 reduced cell death. Signalling pathways activated by JWH-015 included JNK (c-Jun N-terminal kinase) activation and Akt inhibition. In vivo treatment with JWH-015 caused a significant reduction in tumour growth in mice.. This study defines the involvement of CB(2)-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB(2) agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer. Topics: Animals; Apoptosis; Arachidonic Acids; Cell Line, Tumor; Cell Proliferation; Ceramides; Humans; Indoles; Male; Mice; Prostatic Neoplasms; Receptor, Cannabinoid, CB2; Signal Transduction; Xenograft Model Antitumor Assays | 2009 |
The cannabinoid R+ methanandamide induces IL-6 secretion by prostate cancer PC3 cells.
In the present study, we have investigated the effect of the cannabinoid R+ methanandamide (MET) in the androgen-resistant prostate cancer PC3 cells. MET induced a dose-dependent decrease in PC3 cell viability as well as a dose-dependent increase in the secretion of the cytokine IL-6. Looking deeper into the mechanisms involved, we found that MET-induced de novo synthesis of the lipid mediator ceramide that was blocked by the ceramide synthase inhibitor Fumonisin B1. Pre-incubation of cells with the cannabinoid receptor CB2 antagonist SR 144528 (SR2), but not the CB1 antagonist Rimonabant or the TRPV1 antagonist capsazepine, partially prevented the anti-proliferative effect, the ceramide accumulation, and the IL-6-induced secretion, suggesting a CB2 receptor-dependent mechanism. Fumonisin B1 did not have any effect in the IL-6 secretion increase induced by MET. However, even an incomplete down-regulation of (i.e., not a total silencing of) ceramide kinase expression by specific siRNA prevented the MET-induced IL-6 secretion. These results suggest that MET regulates ceramide metabolism in prostate PC3 cells which is involved in cell death as well as in IL-6 secretion. Our findings also suggest that CB2 agonists may offer a novel approach in the treatment of prostate cancer by decreasing cancer epithelial cell proliferation. However, the interaction of prostate cancer cells with their surrounding, and in particular with the immune system in vivo, needs to be further explored. Topics: Adenocarcinoma; Antineoplastic Agents; Apoptosis; Arachidonic Acids; Camphanes; Cell Line, Tumor; Cell Proliferation; Cell Survival; Ceramides; Drug Screening Assays, Antitumor; Gene Silencing; Humans; Interleukin-6; Male; Phosphotransferases (Alcohol Group Acceptor); Prostatic Neoplasms; Pyrazoles; Receptor, Cannabinoid, CB2; RNA, Small Interfering; Transfection | 2009 |
Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue.
Vanilloid receptor subtype-1 (TRPV1), the founding member of the vanilloid receptor-like transient receptor potential channel family, is a non-selective cation channel that responds to noxious stimuli such as low pH, painful heat and irritants. In the present study, we show, as means of reverse transcriptase-polymerase chain reaction and Western blot analysis, that the vanilloid TRPV1 receptor is expressed in the prostate epithelial cell lines PC-3 and LNCaP as well as in human prostate tissue. The kinetic parameters inferred from [(125)I]-resiniferatoxin binding were in concordance with data of TRPV1 receptors expressed in other tissues. The contribution of the endogenously expressed TRPV1 channel to intracellular calcium concentration increase in the prostate cells was studied by measuring changes in Fura-2 fluorescence by fluorescence microscopy. Addition of capsaicin, (R)-methanandamide and resiniferatoxin to prostate cells induced a dose-dependent increase in the intracellular calcium concentration that was reversed by the vanilloid TRPV1 receptor antagonist capsazepine. These results indicate that the vanilloid TRPV1 receptor is expressed and functionally active in human prostate cells. Topics: Arachidonic Acids; Binding, Competitive; Blotting, Western; Calcium; Capsaicin; Cell Line, Tumor; Diterpenes; Dose-Response Relationship, Drug; Gene Expression; Humans; Iodine Radioisotopes; Ion Channels; Male; Prostate; Prostatic Neoplasms; Radioligand Assay; Reverse Transcriptase Polymerase Chain Reaction; TRPV Cation Channels | 2005 |
Enhancement of androgen receptor expression induced by (R)-methanandamide in prostate LNCaP cells.
It has been recently shown that cannabinoids may regulate the growth of many cell types. In the present work we examined the effect of the anandamide analogue (R)-methanandamide (MET) on androgen-dependent prostate LNCaP cell growth. We found that 0.1 microM MET had a mitogenic effect measured by [(3)H]thymidine incorporation into DNA. The effect exerted by MET was blocked by the cannabinoid receptor antagonists SR141716 (SR1) and SR144528 (SR2) as well as by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, suggesting an involvement of cannabinoid receptors and the PI3K pathway in the mechanism of MET action. MET treatment of LNCaP cells also induced an up-regulation of androgen receptor expression that was blocked by the two cannabinoid receptor antagonists SR1 and SR2. These results show for the first time that cannabinoids may modify androgen receptor expression in an androgen-dependent cell line and by this mechanism could regulate prostate cell growth. Topics: Androgen Receptor Antagonists; Arachidonic Acids; Cannabinoids; Cell Division; Cell Line, Tumor; DNA, Neoplasm; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; Male; Mitogens; Phosphoinositide-3 Kinase Inhibitors; Piperidines; Prostatic Neoplasms; Pyrazoles; Receptors, Androgen; Rimonabant; Thymidine; Tritium; Up-Regulation | 2003 |