am-356 has been researched along with Hypertension* in 5 studies
5 other study(ies) available for am-356 and Hypertension
Article | Year |
---|---|
Beneficial Changes in Rat Vascular Endocannabinoid System in Primary Hypertension and under Treatment with Chronic Inhibition of Fatty Acid Amide Hydrolase by URB597.
Our study aimed to examine the effects of hypertension and the chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabinoid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). In the aortas and sMA of SHR, endocannabinoid levels and cannabinoid CB Topics: Acetylcholine; Amidohydrolases; Animals; Aorta; Arachidonic Acids; Benzamides; Carbamates; Endocannabinoids; Essential Hypertension; Hypertension; Male; Mesenteric Arteries; Nitroprusside; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Cannabinoid; Vasoconstriction; Vasodilation | 2021 |
Protective role of cannabinoid CB1 receptors and vascular effects of chronic administration of FAAH inhibitor URB597 in DOCA-salt hypertensive rats.
This study examined whether the fall in blood pressure (BP) induced by the chronic inhibition of fatty acid amide hydrolase (FAAH) by URB597 in deoxycorticosterone acetate (DOCA-salt) hypertensive rats correlates with endocannabinoid-mediated vascular changes.. Functional studies were performed in isolated endothelium-intact aortas and small mesenteric arteries (sMAs) using organ bath technique and wire myography, respectively.. In the DOCA-salt rats, methanandamide-stimulated relaxation was enhanced in sMAs or diminished in aortas. Its vasorelaxant effect in sMAs was sensitive to the antagonist of the Transient Receptor Potential Vanilloid type 1 (TRPV1), capsazepine, in normo- and hypertensive animals and to the antagonist of the cannabinoid CB1 receptors, AM6545, only in DOCA-salt rats. Cannabinoid CB1 receptors were up-regulated merely in DOCA-salt sMAs. URB597 decreased elevated BP in DOCA-salt rats, medial hypertrophy in DOCA-salt aortas. In sMAs it reduced FAAH expression and restored the augmented phenylephrine-induced contraction in the DOCA-salt rats to the level obtained in normotensive controls. In normotensive rats it diminished endothelium-dependent relaxation and increased phenylephrine-induced contraction.. The study showed the protective role of cannabinoid CB1 receptors in DOCA-salt sMAs. Reduction in BP after chronic administration of the FAAH inhibitor URB597 in DOCA-salt hypertensive rats only partially correlates with structural and functional changes in conductance and resistance vessels, respectively. Caution should be taken in studying cannabinoids and FAAH inhibitors as potential therapeutics, because of their vessel- and model-specific activities, and side effects connected with off-target response and activation of alternative pathways of anandamide metabolism. Topics: Amidohydrolases; Animals; Aorta; Arachidonic Acids; Benzamides; Blood Pressure; Capsaicin; Carbamates; Desoxycorticosterone Acetate; Dose-Response Relationship, Drug; Drug Interactions; Hypertension; Male; Mesenteric Arteries; Morpholines; Phenylephrine; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Sodium Chloride; Vasoconstriction; Vasodilation | 2016 |
Effects of chronic nitric oxide synthase inhibition on the cardiovascular responses to cannabinoids in vivo and in vitro.
Since the vasorelaxant potency of the endocannabinoid anandamide is enhanced in perfused mesenteric vascular beds from rats made hypertensive by chronic inhibition of NO synthase (L-NAME in drinking water), we hypothesized that in vivo, anandamide-induced vasodilatation would be similarly enhanced in L-NAME-treated animals.. Male Sprague-Dawley rats were given L-NAME in drinking water (7.5 mg kg(-1) day(-1)) for 4 weeks. Relaxant effects of anandamide were measured in perfused mesenteric vascular beds and in isolated small mesenteric arteries. Renal, mesenteric and hindquarters haemodynamic responses to anandamide, methanandamide, the synthetic cannabinoid agonist WIN-55212-2 and the cannabinoid receptor antagonist AM251 were assessed in conscious, chronically-instrumented rats.. Vasorelaxant responses to anandamide were enhanced in the perfused mesentery but not in isolated mesenteric resistance vessels. In vivo, anandamide caused vasodilatation only in the hindquarters vascular bed and only in control rats. Methanandamide caused a late-onset (40 min after administration) tachycardia, mesenteric and hindquarters vasoconstriction, and renal vasodilatation, which did not differ between control and L-NAME-treated rats. AM251 had no effect on resting blood pressure in control or L-NAME-treated rats and WIN55212-2 caused pressor and renal and mesenteric vasoconstrictor responses, with hindquarters vasodilatation in both groups of animals.. The results provide no in vivo evidence for enhanced vasodilator responses to cannabinoids, or up-regulation of endocannabinoids or their receptor activity, following chronic NO synthase inhibition. Topics: Animals; Arachidonic Acids; Benzoxazines; Blood Pressure; Cannabinoids; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Heart Rate; Hypertension; Male; Mesenteric Arteries; Morpholines; Muscle, Skeletal; Naphthalenes; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Renal Circulation; Splanchnic Circulation; Time Factors; Vascular Resistance; Vasoconstriction; Vasodilation; Vasodilator Agents | 2007 |
Endocannabinoid regulates blood pressure via activation of the transient receptor potential vanilloid type 1 in Wistar rats fed a high-salt diet.
This study was designed to examine the role of the endocannabinoids in blood pressure regulation during high sodium (HS) intake. HS (4% Na+ by weight) intake for 3 weeks increased baseline mean arterial pressure (MAP, mm Hg) compared with normal sodium (NS, 0.4% Na+ by weight)-treated male Wistar rats. Capsazepine (3 mg/kg), a selective transient receptor potential vanilloid type 1 (TRPV1) antagonist, caused a greater increase in MAP (mm Hg) in HS-treated compared with NS-treated rats (13+/-3 versus 4+/-2, p<0.05), whereas calcitonin gene-related peptide (CGRP) dose-dependently decreased MAP in both HS- and NS-treated rats with a more profound effect in the former. HS increased plasma anandamide levels analyzed by liquid chromatography/electrospray tandem mass spectrometry (NS, 2.40+/-0.31 versus HS, 4.05+/-0.47 pmol/ml, p<0.05) and plasma CGRP levels determined by radioimmunoassay (NS, 36.6+/-3.8 versus HS, 55.7+/-6.4 pg/ml, p<0.05). Methanandamide, a metabolically stable analog of anandamide, caused a greater CGRP release in mesenteric arteries isolated from HS-treated compared with NS-treated rats. Western blot showed that expression of receptor activity-modifying protein 1, a subunit of the CGRP receptor, in mesenteric arteries was greater in HS-treated compared with NS-treated rats. These results show that HS intake increases production of anandamide, which may serve as an endovanilloid to activate TRPV1, leading to release of CGRP to blunt salt-induced increases in blood pressure. These data support the notion that TRPV1 may act as a molecular target for salt-induced elevation of endovanilloid compounds to regulate blood pressure. Topics: Animals; Arachidonic Acids; Blood Pressure; Calcitonin Gene-Related Peptide; Cannabinoid Receptor Modulators; Capsaicin; Endocannabinoids; Hypertension; Male; Polyunsaturated Alkamides; Rats; Rats, Wistar; Sodium Chloride, Dietary; TRPV Cation Channels | 2007 |
Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor.
To test the hypothesis that activation of the vanilloid receptor (VR1) contributes to the anandamide-induced depressor effect in spontaneously hypertensive rats (SHR), we used a selective VR1 antagonist capsazepine (CAPZ) and a selective cannabinoid type 1 receptor antagonist SR141716A in conjunction with a VR1 agonist capsaicin in both SHR and Wistar-Kyoto rats (WKY). Mean arterial pressure was increased in SHR compared with WKY (P<0.05). Intravenous administration of capsaicin caused a greater depressor response in SHR compared with WKY (P<0.05), which was blocked by approximately 60% by CAPZ (P<0.05) in SHR only. Methanandamide caused a similar greater depressor response (P<0.05), which was blocked by approximately 50% and 60% by CAPZ and SR141716A, respectively, in SHR (P<0.05) but not in WKY. Radioimmunoassay showed that methanandamide increased plasma calcitonin gene-related peptide (CGRP) levels from baseline in both SHR and WKY (P<0.05), with no difference between 2 strains. Western blot showed that protein expression for the calcitonin receptor-like receptor-but not receptor activity modifying protein 1, VR1, and cannabinoid type 1 receptors-was increased in mesenteric resistance arteries in SHR compared with WKY (P<0.05). These data indicate that in addition to activation of cannabinoid type 1, anandamide may serve as an endogenous compound to stimulate VR1, leading to a decrease in blood pressure via CGRP release from sensory nerve terminals. Increased mesenteric CGRP receptor expression in SHR may account for increased sensitivity of blood pressure to anandamide and may serve as a compensatory response to buffer the increase in blood pressure in SHR. Topics: Animals; Arachidonic Acids; Blood Pressure; Calcitonin Gene-Related Peptide; Capsaicin; Endocannabinoids; Hypertension; Male; Mesenteric Arteries; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 2003 |