am-356 has been researched along with Brain-Neoplasms* in 4 studies
4 other study(ies) available for am-356 and Brain-Neoplasms
Article | Year |
---|---|
R(+)-methanandamide elicits a cyclooxygenase-2-dependent mitochondrial apoptosis signaling pathway in human neuroglioma cells.
Cannabinoids have been associated with tumor regression and apoptosis of cancer cells. Recently, we have shown that R(+)-methanandamide (R(+)-MA) induces apoptosis of H4 human neuroglioma cells via a mechanism involving de novo expression of the cyclooxygenase-2 (COX-2) enzyme. The present study investigated a possible involvement of a mitochondrial-driven pathway in this process.. Cell death was determined by the WST-1 cell viability test, and changes in apoptotic parameters [i.e., release of mitochondrial cytochrome c, activation of caspases, cleavage of poly(ADP-ribose) polymerase (PARP)] were detected by Western blotting.. H4 cells treated with R(+)-MA showed typical signs of mitochondrial apoptosis, i.e., release of mitochondrial cytochrome c into the cytosol and activation of initiator caspase-9. Moreover, activation of the executor caspase-3 was observed following cannabinoid treatment. Cells were fully protected from apoptotic cell death by the caspase-3 inhibitor Ac-DEVD-CHO, indicating a crucial role for caspase-3 activation in R(+)-MA-elicited apoptosis. Furthermore, cleavage of the caspase-3 target protein PARP was registered. All of the aforementioned effects were substantially reduced by the selective COX-2 inhibitor celecoxib (1 muM) at a pharmacologically relevant, nonapoptotic concentration.. R(+)-MA-induced apoptosis is mediated via a mitochondrial-dependent pathway that becomes activated, at least in part, through up-regulation of the COX-2 enzyme. Topics: Animals; Apoptosis; Arachidonic Acids; Blotting, Western; Brain Neoplasms; Caspase 3; Caspase 9; Caspases; Celecoxib; Cell Survival; CHO Cells; Cricetinae; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cytochromes c; Glioma; Humans; Mitochondria; Poly(ADP-ribose) Polymerases; Pyrazoles; Signal Transduction; Sulfonamides | 2006 |
R(+)-methanandamide-induced cyclooxygenase-2 expression in H4 human neuroglioma cells: possible involvement of membrane lipid rafts.
Cannabinoids induce the expression of the cyclooxygenase-2 (COX-2) isoenzyme in H4 human neuroglioma cells via a pathway independent of cannabinoid- or vanilloid receptor activation. The underlying mechanism was recently shown to involve increased synthesis of ceramide, which in turn leads to activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs). The present study investigates a possible contribution of membrane lipid rafts to cannabinoid-induced COX-2 expression. To address this issue, we tested the influence of methyl-beta-cyclodextrin (MCD), a membrane cholesterol depletor, on COX-2 expression by the endocannabinoid analogue R(+)-methanandamide (R(+)-MA). Incubation of H4 cells with MCD was associated with a loss of lipid raft integrity and a substantial inhibition of R(+)-MA-induced COX-2 expression and subsequent formation of prostaglandin E2. Moreover, MCD was shown to suppress signal transduction steps upstream to COX-2 induction by R(+)-MA. Accordingly, the cholesterol depletor suppressed R(+)-MA-induced formation of ceramide as well as phosphorylation of p38 and p42/44 MAPKs. Together, our results suggest that R(+)-MA induces COX-2 expression in human neuroglioma cells via a pathway linked to lipid raft microdomains. Topics: Arachidonic Acids; beta-Cyclodextrins; Blotting, Western; Brain Neoplasms; Cell Line; Cell Line, Tumor; Ceramides; Cholesterol; Cyclooxygenase 2; Dinoprostone; Dose-Response Relationship, Drug; Glioma; Humans; Isoenzymes; MAP Kinase Signaling System; Membrane Microdomains; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Prostaglandin-Endoperoxide Synthases; Prostaglandins; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction | 2004 |
Induction of COX-2 expression by the endocannabinoid derivative R(+)-methanandamide.
Topics: Arachidonic Acids; Brain Neoplasms; Cannabinoid Receptor Modulators; Cannabinoids; Cyclooxygenase 2; Endocannabinoids; Gene Expression Regulation, Enzymologic; Glioma; Humans; Isoenzymes; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Prostaglandin-Endoperoxide Synthases; Tumor Cells, Cultured | 2003 |
R(+)-methanandamide induces cyclooxygenase-2 expression in human neuroglioma cells via a non-cannabinoid receptor-mediated mechanism.
Cannabinoids affect prostaglandin (PG) formation in the central nervous system through as yet unidentified mechanisms. Using H4 human neuroglioma cells, the present study investigates the effect of R(+)-methanandamide (metabolically stable analogue of the endocannabinoid anandamide) on the expression of the cyclooxygenase-2 (COX-2) enzyme. Incubation of cells with R(+)-methanandamide was accompanied by concentration-dependent increases in COX-2 mRNA, COX-2 protein, and COX-2-dependent PGE(2) synthesis. Moreover, treatment of cells with R(+)-methanandamide in the presence of interleukin-1beta led to an overadditive induction of COX-2 expression. The stimulatory effect of R(+)-methanandamide on COX-2 expression was mimicked by the structurally unrelated cannabinoid Delta(9)-tetrahydrocannabinol. Stimulation of both COX-2 mRNA expression and subsequent PGE(2) synthesis by R(+)-methanandamide was not affected by the selective CB(1) receptor antagonist AM-251 or the G(i/o) protein inactivator pertussis toxin. Enhancement of COX-2 expression by R(+)-methanandamide was paralleled by time-dependent phosphorylations of p38 mitogen-activated protein kinase (MAPK) and p42/44 MAPK. Consistent with the activation of both kinases, R(+)-methanandamide-induced COX-2 mRNA expression and PGE(2) formation were abrogated in the presence of specific inhibitors of p38 MAPK (SB203580) and p42/44 MAPK activation (PD98059). Together, our results demonstrate that R(+)-methanandamide induces COX-2 expression in human neuroglioma cells via a cannabinoid receptor-independent mechanism involving activation of the MAPK pathway. In conclusion, induction of COX-2 expression may represent a novel mechanism by which cannabinoids mediate PG-dependent effects within the central nervous system. Topics: Analgesics, Non-Narcotic; Arachidonic Acids; Blotting, Western; Brain Neoplasms; Cannabinoid Receptor Modulators; Cell Line; Central Nervous System; Cyclooxygenase 2; Dinoprostone; Dose-Response Relationship, Drug; Dronabinol; Enzyme Activation; Enzyme Inhibitors; Flavonoids; Glioma; Humans; Imidazoles; Interleukin-1; Isoenzymes; Membrane Proteins; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Pertussis Toxin; Phosphorylation; Piperidines; Prostaglandin-Endoperoxide Synthases; Pyrazoles; Pyridines; Receptors, Cannabinoid; Receptors, Drug; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Tumor Cells, Cultured; Virulence Factors, Bordetella | 2001 |