am-1241 and Inflammation

am-1241 has been researched along with Inflammation* in 12 studies

Other Studies

12 other study(ies) available for am-1241 and Inflammation

ArticleYear
Promoted inhibition of TLR4/miR-155/ NF
    Chemico-biological interactions, 2021, Feb-25, Volume: 336

    Topics: Animals; Cannabinoids; Dose-Response Relationship, Drug; Inflammation; Liver Cirrhosis; Male; MicroRNAs; Rats; Rats, Wistar; Signal Transduction; Structure-Activity Relationship; Thioacetamide; Toll-Like Receptor 4; Transcription Factor RelA

2021
The curative effect of cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.
    Fundamental & clinical pharmacology, 2020, Volume: 34, Issue:1

    Ischemia and reperfusion of intestinal tissue (intestinal I/R) induce disruption of ileal contractility and chain responses of inflammatory. The aim of this study was to reveal whether therapeutic value of cannabinoid 2 (CB2) receptor activity in the intestinal I/R, via to the exogenous administration of CB2 agonist (AM-1241). Intestinal I/R injury were performed through 30-min ischemia and 150-min reperfusion of mesenteric artery in Wistar rats. The pre-administered doses of 0.1, 1, and 5 mg/kg of CB2 agonist were studied to inhibit inflammation of intestinal I/R injury including ileum smooth muscle contractility, polymorphonuclear cell migration, oxidant/antioxidant defense system, and provocative cytokines. Pre-administration with CB2 receptor agonist ensured to consider improving the disrupted contractile responses in ileum smooth muscle along with decreased the formation of MDA that production of lipid peroxidation, reversed the depleted glutathione, inhibited the expression of TNF-α and of IL-1β in the intestinal I/R of rats. Taken together results of this research, the agonistic activity of CB2 receptor for healing of intestinal I/R injury is ensuring associated with anti-inflammatory mechanisms such as the inhibiting of migration of inflammatory polymorphonuclear cells that origin of acute and initial responses of inflammation, the inhibiting of production of provocative and pro-inflammatory cytokines like TNF-α and IL-1β, the rebalancing of oxidant/antioxidant redox system disrupted in injury of reperfusion period and the supporting of physiologic defensive systems in endothelial and inducible inflammatory cells.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Cannabinoids; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Glutathione; Inflammation; Intestines; Male; Oxidation-Reduction; Rats; Rats, Wistar; Receptor, Cannabinoid, CB2; Reperfusion Injury

2020
Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.
    Biochemical and biophysical research communications, 2015, Feb-27, Volume: 458, Issue:1

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC.

    Topics: Animals; Anti-Inflammatory Agents; Arginase; Benzophenanthridines; Brain-Derived Neurotrophic Factor; Cannabinoids; Cell Line; Glial Cell Line-Derived Neurotrophic Factor; Indoles; Inflammation; Interferon-gamma; Lipopolysaccharides; Mice; Microglia; Nitric Oxide Synthase Type II; Protein Kinase C; Receptor, Cannabinoid, CB2; Signal Transduction

2015
Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist.
    Journal of neuroimmunology, 2012, Volume: 244, Issue:1-2

    Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine-mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyperalgesia and tactile allodynia in rats. A CB2 (AM 630) but not a CB1 (AM 251) antagonist mitigated this effect. AM 1241 co-treatment also attenuated spinal astrocyte and microglial marker and pro-inflammatory mediator (IL-1β, TNFα) immunoreactivities in morphine-treated rats, suggesting that CB2 agonists may be useful to prevent the neuroinflammatory consequences of sustained morphine treatment.

    Topics: Analgesics; Analgesics, Opioid; Animals; Cannabinoids; Hyperalgesia; Indoles; Inflammation; Interleukin-1beta; Male; Morphine; Neuroglia; Pain; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Spinal Cord; Tumor Necrosis Factor-alpha

2012
Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors.
    European journal of pain (London, England), 2012, Volume: 16, Issue:5

    Endogenous cannabinoids and peripheral cannabinoid CB2 receptors (CB2Rs) are involved in the antinociceptive effect of electroacupuncture (EA) on inflammatory pain. However, it is not clear how CB2R activation contributes to the antinociceptive effect of EA. The major proinflammatory cytokines, such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, are involved in inflammatory pain. Here we determined the effects of CB2R activation and EA on the expression level of IL-1β, IL-6 and TNF-α in inflamed skin tissues. Inflammatory pain was induced by injection of complete Freund's adjuvant into the left hindpaw of rats. Thermal hyperalgesia was tested with a radiant heat stimulus, and mechanical allodynia was quantified using von Frey filaments. The mRNA and protein levels of IL-1β, IL-6 and TNF-α in inflamed skin tissues were measured using real-time polymerase chain reaction and Western blot, respectively. Local injection of the selective CB2R agonist AM1241 or EA applied to GB30 and GB34 significantly reduced thermal hyperalgesia and mechanical allodynia induced by tissue inflammation. The specific CB2R antagonist AM630 significantly attenuated the antinociceptive effect of EA. Furthermore, EA or AM1241 treatment significantly decreased the mRNA and protein levels of IL-1β, IL-6 and TNF-α in inflamed skin tissues. In addition, pretreatment with AM630 significantly reversed the inhibitory effect of EA on these cytokine levels in inflamed skin tissues. Our results suggest that EA reduces inflammatory pain and proinflammatory cytokines in inflamed skin tissues through activation of CB2Rs.

    Topics: Animals; Cannabinoids; Electroacupuncture; Hyperalgesia; Indoles; Inflammation; Interleukin-1beta; Interleukin-6; Male; Pain Management; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; RNA, Messenger; Skin; Tumor Necrosis Factor-alpha

2012
Central and peripheral sites of action for CB₂ receptor mediated analgesic activity in chronic inflammatory and neuropathic pain models in rats.
    British journal of pharmacology, 2011, Volume: 162, Issue:2

    Cannabinoid CB₂ receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB₂-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB₂ receptor expression in 'pain relevant' tissues and the potential sites of action of CB₂ agonism in rats.. Expression of cannabinoid receptor mRNA was evaluated by quantitative RT-PCR in dorsal root ganglia (DRGs), spinal cords, paws and several brain regions of sham, chronic inflammatory pain (CFA) and neuropathic pain (spinal nerve ligation, SNL) rats. The sites of CB₂ mediated antinociception were evaluated in vivo following intra-DRG, intrathecal (i.t.) or intraplantar (i.paw) administration of potent CB₂-selective agonists A-836339 and AM1241.. CB₂ receptor gene expression was significantly up-regulated in DRGs (SNL and CFA), spinal cords (SNL) or paws (CFA) ipsilateral to injury under inflammatory and neuropathic pain conditions. Systemic A-836339 and AM1241 produced dose-dependent efficacy in both inflammatory and neuropathic pain models. Local administration of CB₂ agonists also produced significant analgesic effects in SNL (intra-DRG and i.t.) and CFA (intra-DRG) pain models. In contrast to A-836339, i.paw administration of AM-1241 dose-relatedly reversed the CFA-induced thermal hyperalgesia, suggesting that different mechanisms may be contributing to its in vivo properties.. These results demonstrate that both DRG and spinal cord are important sites contributing to CB₂ receptor-mediated analgesia and that the changes in CB₂ receptor expression play a crucial role for the sites of action in regulating pain perception.

    Topics: Analgesia; Analgesics; Animals; Brain; Cannabinoids; Disease Models, Animal; Ganglia, Spinal; Inflammation; Male; Neuralgia; Opioid Peptides; Pain; Pain Perception; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; RNA, Messenger; Spinal Cord; Thiazoles

2011
Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice.
    European journal of pharmacology, 2011, Oct-01, Volume: 668, Issue:1-2

    The stimulation of spinal cannabinoid type 2 (CB(2)) receptors is a suitable strategy for the alleviation of experimental pain symptoms. Several reports have described the up-regulation of spinal cannabinoid CB(2) receptors in neuropathic settings together with the analgesic effects derived from their activation. Besides, we have recently reported in two murine bone cancer models that the intrathecal administration of cannabinoid CB(2) receptor agonists completely abolishes hyperalgesia and allodynia, whereas spinal cannabinoid CB(2) receptor expression remains unaltered. The present experiments were designed to measure the expression of spinal cannabinoid CB(2) receptors as well as the analgesic efficacy derived from their stimulation in mice chronically inflamed by the intraplantar injection of complete Freund's adjuvant 1 week before. Both spinal cannabinoid CB(2) receptors mRNA measured by real-time PCR and cannabinoid CB(2) receptor protein levels measured by western blot remained unaltered in inflamed mice. Besides, the intrathecal (i.t.) administration of the cannabinoid CB(2) receptor agonists AM1241, (R,S)-3-(2-Iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole, (0.03-1 μg) and JWH 133, (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran, (3-30 μg) dose-dependently blocked inflammatory thermal hyperalgesia and mechanical allodynia. The analgesic effects induced by both agonists were counteracted by the coadministration of the selective cannabinoid CB(2) receptor antagonist SR144528, 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide, (5 μg) but not by the cannabinoid CB(1) receptor antagonist AM251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, (10 μg). The effects induced by AM1241 were also inhibited by the coadministration of the opioid receptor antagonist, naloxone (1 μg). These results demonstrate that effective analgesia can be achieved in chronic inflammatory settings through the stimulation of spinal cannabinoid CB(2) receptors even if this receptor population is not up-regulated.

    Topics: Analgesics; Animals; Cannabinoids; Chronic Disease; Freund's Adjuvant; Gene Expression Regulation; Hyperalgesia; Inflammation; Male; Mice; Receptor, Cannabinoid, CB2; RNA, Messenger; Spinal Cord; Temperature

2011
Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis.
    British journal of pharmacology, 2007, Volume: 150, Issue:2

    Effects of locally administered agonists and antagonists for cannabinoid CB(1) and CB(2) receptors on mechanical and thermal hypersensitivity were compared after the establishment of chronic inflammation.. Carrageenan was administered unilaterally to the rat hindpaw on day 1. Prophylactic efficacy of locally administered CB(1)- and CB(2)-selective agonists -arachidonyl-2-chloroethylamide (ACEA) and (R,S)-(2-iodo-5-nitro-phenyl)-[l-(l-methyl-piperidin-2-ylmethyl)-lH-ubdik-3-yl]-methanone ((R,S)-AM1241), respectively- on mechanical and thermal hypersensitivity were compared on day 2. Pharmacological specificity was evaluated using locally administered CB(1) and CB(2)-selective antagonists -N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A) and N-[(1S)-endo-1,3,3-trimethyl bicycle [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), respectively.. Administration of either ACEA or AM1241 to the inflamed but not noninflamed paw suppressed the maintenance of carrageenan-evoked mechanical hyperalgesia and tactile allodynia and attenuated thermal hyperalgesia. The ACEA-induced suppression of mechanical and thermal hypersensitivity was blocked by local injection of SR141716A but not SR144528. AM1241 suppressed mechanical hypersensitivity with the reverse pharmacological specificity. The AM1241-induced suppression of thermal hyperalgesia was blocked by SR144528 and to a lesser extent by SR14176A. Co-administration of ACEA with AM1241 in the inflamed paw increased the magnitude but not the duration of thermal antihyperalgesia compared to intraplantar administration of either agonist alone.. Cannabinoids act locally through distinct CB(1) and CB(2) mechanisms to suppress mechanical hypersensitivity after the establishment of chronic inflammation, at doses that produced modest changes in thermal hyperalgesia. Additive antihyperalgesic effects were observed following prophylactic co-administration of the CB(1)- and CB(2)-selective agonists. Our results suggest that peripheral cannabinoid antihyperalgesic actions may be exploited for treatment of inflammatory pain states.

    Topics: Animals; Arachidonic Acids; Cannabinoids; Carrageenan; Chronic Disease; Drug Synergism; Hot Temperature; Hyperalgesia; Inflammation; Male; Pain; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Touch

2007
The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset.
    Journal of neurochemistry, 2007, Volume: 101, Issue:1

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, paralysis and death within 2-5 years of diagnosis. Currently, no effective pharmacological agents exist for the treatment of this devastating disease. Neuroinflammation may accelerate the progression of ALS. Cannabinoids produce anti-inflammatory actions via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), and delay the progression of neuroinflammatory diseases. Additionally, CB2 receptors, which normally exist primarily in the periphery, are dramatically up-regulated in inflamed neural tissues associated with CNS disorders. In G93A-SOD1 mutant mice, the most well-characterized animal model of ALS, endogenous cannabinoids are elevated in spinal cords of symptomatic mice. Furthermore, treatment with non-selective cannabinoid partial agonists prior to, or upon, symptom appearance minimally delays disease onset and prolongs survival through undefined mechanisms. We demonstrate that mRNA, receptor binding and function of CB2, but not CB1, receptors are dramatically and selectively up-regulated in spinal cords of G93A-SOD1 mice in a temporal pattern paralleling disease progression. More importantly, daily injections of the selective CB2 agonist AM-1241, initiated at symptom onset, increase the survival interval after disease onset by 56%. Therefore, CB2 agonists may slow motor neuron degeneration and preserve motor function, and represent a novel therapeutic modality for treatment of ALS.

    Topics: Amyotrophic Lateral Sclerosis; Animals; Binding, Competitive; Cannabinoid Receptor Modulators; Cannabinoids; Central Nervous System; Disease Models, Animal; Disease Progression; Humans; Inflammation; Male; Mice; Mice, Transgenic; Neuroprotective Agents; Receptor, Cannabinoid, CB2; RNA, Messenger; Spinal Cord; Superoxide Dismutase; Superoxide Dismutase-1; Survival Rate; Treatment Outcome; Up-Regulation

2007
Activation of cannabinoid CB2 receptors suppresses C-fiber responses and windup in spinal wide dynamic range neurons in the absence and presence of inflammation.
    Journal of neurophysiology, 2004, Volume: 92, Issue:6

    Effects of the CB2-selective cannabinoid agonist AM1241 on activity evoked in spinal wide dynamic range (WDR) neurons by transcutaneous electrical stimulation were evaluated in urethane-anesthetized rats. Recordings were obtained in both the absence and the presence of carrageenan inflammation. AM1241, administered intravenously or locally in the paw, suppressed activity evoked by transcutaneous electrical stimulation during the development of inflammation. Decreases in WDR responses resulted from a suppression of C-fiber-mediated activity and windup. Abeta- and Adelta-fiber-mediated responses were not reliably altered. The AM1241-induced suppression of electrically evoked responses was blocked by the CB2 antagonist SR144528 but not by the CB1 antagonist SR141716A. AM1241 (33 microg/kg intraplantar [i.p.l.]), administered to the carrageenan-injected paw, suppressed activity evoked in WDR neurons relative to groups receiving vehicle in the same paw or AM1241 in the opposite (noninflamed) paw. The electrophysiological effects of AM1241 (330 microg/kg intravenous [i.v.]) were greater in rats receiving i.p.l. carrageenan compared with noninflamed rats receiving an i.p.l. injection of vehicle. AM1241 failed to alter the activity of purely nonnociceptive neurons recorded in the lumbar dorsal horn. Additionally, AM1241 (330 microg/kg i.v. and i.p.l.; 33 microg/kg i.p.l.) reduced the diameter of the carrageenan-injected paw. The AM1241-induced decrease in peripheral edema was blocked by the CB2 but not by the CB1 antagonist. These data demonstrate that activation of cannabinoid CB2 receptors is sufficient to suppress neuronal activity at central levels of processing in the spinal dorsal horn. Our findings are consistent with the ability of AM1241 to normalize nociceptive thresholds and produce antinociception in inflammatory pain states.

    Topics: Analgesics; Animals; Camphanes; Cannabinoids; Carrageenan; Edema; Electric Stimulation; Inflammation; Male; Nerve Fibers, Unmyelinated; Nociceptors; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Rimonabant

2004
Selective activation of cannabinoid CB(2) receptors suppresses spinal fos protein expression and pain behavior in a rat model of inflammation.
    Neuroscience, 2003, Volume: 119, Issue:3

    Activation of cannabinoid CB(2) receptors attenuates thermal nociception in untreated animals while failing to produce centrally mediated effects such as hypothermia and catalepsy [Pain 93 (2001) 239]. The present study was conducted to test the hypothesis that activation of CB(2) in the periphery suppresses the development of inflammatory pain as well as inflammation-evoked neuronal activity at the level of the CNS. The CB(2)-selective cannabinoid agonist AM1241 (100, 330 micrograms/kg i.p.) suppressed the development of carrageenan-evoked thermal and mechanical hyperalgesia and allodynia. The AM1241-induced suppression of carrageenan-evoked behavioral sensitization was blocked by the CB(2) antagonist SR144528 but not by the CB(1) antagonist SR141716A. Intraplantar (ipl) administration of AM1241 (33 micrograms/kg ipl) suppressed hyperalgesia and allodynia following administration to the carrageenan-injected paw but was inactive following administration in the contralateral (noninflamed) paw, consistent with a local site of action. In immunocytochemical studies, AM1241 suppressed spinal Fos protein expression, a marker of neuronal activity, in the carrageenan model of inflammation. AM1241 suppressed carrageenan-evoked Fos protein expression in the superficial and neck region of the dorsal horn but not in the nucleus proprius or the ventral horn. The suppression of carrageenan-evoked Fos protein expression induced by AM1241 was blocked by coadministration of SR144528 in all spinal laminae. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to suppress inflammation-evoked neuronal activity at rostral levels of processing in the spinal dorsal horn, consistent with the ability of AM1241 to normalize nociceptive thresholds and produce antinociception in inflammatory pain states.

    Topics: Analgesics; Animals; Camphanes; Cannabinoids; Carrageenan; Disease Models, Animal; Drug Interactions; Hyperalgesia; Inflammation; Male; Nociceptors; Pain; Pain Threshold; Piperidines; Posterior Horn Cells; Proto-Oncogene Proteins c-fos; Pyrazoles; Rats; Rats, Sprague-Dawley; Reaction Time; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant

2003
Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors.
    Anesthesiology, 2003, Volume: 99, Issue:4

    Cannabinoid receptor agonists inhibit inflammatory hyperalgesia in animal models. Nonselective cannabinoid receptor agonists also produce central nervous system (CNS) side effects. Agonists selective for CB2 cannabinoid receptors, which are not found in the CNS, do not produce the CNS effects typical of nonselective cannabinoid receptor agonists but do inhibit acute nociception. The authors used the CB2 receptor-selective agonist AM1241 to test the hypothesis that selective activation of peripheral CB2 receptors inhibits inflammatory hyperalgesia.. Rats were injected in the hind paw with carrageenan or capsaicin. Paw withdrawal latencies were measured using a focused thermal stimulus. The effects of peripheral CB2 receptor activation were determined by using local injection of AM1241. CB2 receptor mediation of the actions of AM1241 was shown by using the CB2 receptor-selective antagonist AM630 and the CB1 receptor-selective antagonist AM251.. AM1241 fully reversed carrageenan-induced inflammatory thermal hyperalgesia when injected into the inflamed paw. In contrast, AM1241 injected into the contralateral paw had no effect, showing that its effects were local. AM1241 also reversed the local edema produced by hind paw carrageenan injection. The effects of AM1241 were reversed by the CB2 receptor-selective antagonist AM630, but not by the CB1 receptor-selective antagonist AM251. AM1241 also inhibited flinching and thermal hyperalgesia produced by hind paw capsaicin injection.. Local, peripheral CB2 receptor activation inhibits inflammation and inflammatory hyperalgesia. These results suggest that peripheral CB2 receptors may be an appropriate target for eliciting relief of inflammatory pain without the CNS effects of nonselective cannabinoid receptor agonists.

    Topics: Analgesics; Animals; Cannabinoids; Dose-Response Relationship, Drug; Edema; Hyperalgesia; Inflammation; Male; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug

2003