am-1241 has been researched along with Fibrosis* in 2 studies
2 other study(ies) available for am-1241 and Fibrosis
Article | Year |
---|---|
Renal effects of chronic pharmacological manipulation of CB2 receptors in rats with diet-induced obesity.
In diabetic nephropathy agonism of CB2 receptors reduces albuminuria and podocyte loss; however, the role of CB2 receptors in obesity-related nephropathy is unknown. The aim of this study was to determine the role of CB2 receptors in a model of diet-induced obesity (DIO) and characterize the hallmark signs of renal damage in response to agonism (AM1241) and antagonism (AM630) of CB2 receptors.. Male Sprague Dawley rats were fed a high-fat diet (HFD: 40% digestible energy from lipids) for 10 weeks. In another cohort, after 9 weeks on a HFD, rats were injected daily with either 3 mg·kg(-1) AM1241, 0.3 mg·kg(-1) AM630 or saline for 6 weeks.. Ten weeks on a HFD significantly reduced renal expression of CB2 receptors and renal function. Treatment with AM1241 or AM630 did not reduce weight gain or food consumption in DIO. Despite this, AM1241 significantly reduced systolic BP, peri-renal adipose accumulation, plasma leptin, urinary protein, urinary albumin, urinary sodium excretion and the fibrotic markers TGF-β1, collagen IV and VEGF in kidney lysate. Treatment with AM630 of DIO rats significantly reduced creatinine clearance and increased glomerular area and kidney weight (gross and standardized for body weight). Diastolic BP, glucose tolerance, insulin sensitivity, plasma creatinine, plasma TGF-β1 and kidney expression of fibronectin and α-smooth muscle actin were not altered by either AM1241 or AM630 in DIO.. This study demonstrates that while agonism of CB2 receptors with AM1241 treatment for 6 weeks does not reduce weight gain in obese rats, it leads to improvements in obesity-related renal dysfunction.. This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc. Topics: Animals; Cannabinoids; Cytokines; Dietary Fats; Fibrosis; Indoles; Kidney; Kidney Glomerulus; Kidney Tubules; Male; Obesity; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Weight Gain | 2016 |
Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice.
Myocardial interstitial fibrosis is a major histologic landmark resulting in cardiac dysfunction after myocardial infarction (MI). Activation of cannabinoid receptor type II (CB2 receptor) have been demonstrated to reduce fibrosis in hepatic cirrhotic rat. However, the anti-fibrotic effect of CB2 receptor activation in infarcted hearts was still unclear. In this study, we aimed to investigate the effects of a CB2 receptor selective agonist AM1241 on myocardial fibrosis post MI in mice.. Echocardiograph was conducted to assess cardiac function. Fibrosis markers such as type I and type III collagen, fibronectin, Plasminogen activator inhibitor(PAI)-1 and tissue inhibitor of metalloprotease(TIMP)-1 were examined by Western blot, while collagens were directly observed by Sirius-red staining. Primary cultured cardiac fibroblasts(CFs) were subjected to hypoxia/serum deprivation (H/SD) injury to simulate ischemic conditions in vivo. Nrf2 siRNA were applied to explore the role of Nrf2 and TGF-β1/Smad3 pathway in this process.. Echocardiography showed that AM1241 significantly improved cardiac function, suppressed the expression of fibrosis markers such as collagen I and collagen III, fibronectin, PAI-1 and TIMP-1 in mice with MI. In cardiac fibroblasts subjected to H/SD injury, AM1241 reduced the elevated levels of α-SMA, collagen I and collagen III, which were partially abrogated by the Nrf2 siRNA transfection. Furthermore, AM1241 not only activated and accelerated the translocation of Nrf2 to nucleus, but also inhibited TGF-β1/ Smad3 pathway in an Nrf2 dependent manner.. CB2 receptor agonist AM1241 alleviated myocardial interstitial fibrosis via Nrf2 -mediated down-regulation of TGF-β1/Smad3 pathway, which suggested that CB2 receptor activation might represent a promising target for retarding cardiac fibrosis after MI. Topics: Animals; Cannabinoids; Collagen Type I; Collagen Type III; Fibroblasts; Fibronectins; Fibrosis; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; NF-E2-Related Factor 2; Primary Cell Culture; Receptor, Cannabinoid, CB2; RNA, Small Interfering; Serpin E2; Signal Transduction; Smad3 Protein; Tissue Inhibitor of Metalloproteinase-1; Transforming Growth Factor beta1 | 2016 |