alvocidib has been researched along with Lung-Neoplasms* in 31 studies
1 review(s) available for alvocidib and Lung-Neoplasms
Article | Year |
---|---|
Neutropenic enterocolitis (typhilitis) associated with docetaxel therapy in a patient with non-small-cell lung cancer: case report and review of literature.
Neutropenic enterocolitis (NE) is an unusual acute complication of neutropenia, most often associated with leukemia and lymphoma which is characterized by segmental cecal and ascending colon ulceration that may progress to necrosis, perforation, and septicemia. We present a case of neutropenic enterocolitis in a patient with non-small-cell lung cancer who received docetaxel and flavopiridol as part of a phase I clinical trial and review cases in the literature where docetaxel was involved. Given the increased use of docetaxel and other taxanes in the treatment of advanced lung cancer, physicians should be aware of this potential toxicity of therapy. Topics: Aged; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Clinical Trials, Phase I as Topic; Docetaxel; Enterocolitis, Neutropenic; Fatal Outcome; Female; Flavonoids; Humans; Lung Neoplasms; Piperidines; Taxoids | 2004 |
3 trial(s) available for alvocidib and Lung-Neoplasms
Article | Year |
---|---|
Phase I study of flavopiridol in combination with Paclitaxel and Carboplatin in patients with non-small-cell lung cancer.
The aim of this study was to evaluate the safety and tolerability of escalating doses of flavopiridol/ paclitaxel/carboplatin in patients with advanced-stage non-small-cell lung cancer (NSCLC) as well as the pharmacokinetics and activity of flavopiridol when used in combination with paclitaxel/carboplatin.. Eligible patients aged 18-75 years with previously untreated stage IIIB/IV NSCLC received paclitaxel 175 mg/m2 over 3 hours followed by carboplatin area under the curve (AUC) 5 over 1 hour and flavopiridol 30-85 mg/m2 over 24 hours every 3 weeks for 3 cycles.. Eighteen patients were enrolled at 4 sites in the United States and received flavopiridol 30 mg/m2 (n = 3), 50 mg/m2 (n = 6), 70 mg/m2 (n = 3), or 85 mg/m2 (n = 6). No dose-limiting toxicities (DLTs) occurred at the 50-mg/m2 or 70-mg/m2 dose levels. Two patients treated at the 85-mg/m2 dose level experienced cardiovascular events that did not meet the criteria for DLT but were fatal in 1 case, prompting no further flavopiridol dose escalations and establishment of 70 mg/m2 as the maximum tolerated dose. The most frequently reported adverse events across all dose levels combined were nausea (89%), asthenia (67%), and diarrhea (56%). Flavopiridol concentrations increased rapidly, reached a plateau, and showed a multiphasic decline after the 24-hour infusion. Of 12 patients evaluable for efficacy, 8 achieved a partial response, and 4 had stable disease.. Flavopiridol in doses Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Area Under Curve; Carboplatin; Carcinoma, Non-Small-Cell Lung; Dose-Response Relationship, Drug; Female; Flavonoids; Humans; Infusions, Intravenous; Lung Neoplasms; Male; Maximum Tolerated Dose; Middle Aged; Neoplasm Staging; Paclitaxel; Piperidines | 2008 |
A phase II trial of the cyclin-dependent kinase inhibitor flavopiridol in patients with previously untreated stage IV non-small cell lung cancer.
Flavopiridol is a potent cyclin-dependent kinase inhibitor with preclinical activity against non-small cell lung cancer (NSCLC), inhibiting tumor growth in vitro and in vivo by cytostatic and cytotoxic mechanisms. A Phase II trial was conducted to determine the activity and toxicity of flavopiridol in untreated patients with metastatic NSCLC.. A total of 20 patients were treated with a 72-h continuous infusion of flavopiridol every 14 days at a dose of 50 mg/m(2)/day and a concentration of 0.1-0.2 mg/ml. Dose escalation to 60 mg/m(2)/day was permitted if no significant toxicity occurred. Response was initially assessed after every two infusions; patients treated longer than 8 weeks were then assessed after every four infusions. Plasma levels of flavopiridol were measured daily during the first two infusions to determine steady-state concentrations.. This study was designed to evaluate a total of 45 patients in two stages. However, because no objective responses were seen in the first 20 patients, the early-stopping rule was invoked, and patient accrual was halted. In four patients who received eight infusions, progression was documented at 15, 20, 40, and 65 weeks, respectively. The most common toxicities included grade 1 or 2 diarrhea in 11 patients, asthenia in 10 patients, and venous thromboses in 7 patients. The mean +/- SD steady-state concentration of drug during the first infusion was 200 +/- 89.9 nM, sufficient for cytostatic effects in in vitro models.. At the current doses and schedule, flavopiridol does not have cytotoxic activity in NSCLC, although protracted periods of disease stability were observed with an acceptable degree of toxicity. Topics: Aged; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cyclin-Dependent Kinases; Disease Progression; Dose-Response Relationship, Drug; Enzyme Inhibitors; Female; Flavonoids; Gas Chromatography-Mass Spectrometry; Humans; Lung Neoplasms; Male; Middle Aged; Neoplasm Metastasis; Piperidines; Time Factors | 2001 |
Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study.
Flavopiridol is the first cyclin-dependent kinase (cdk) inhibitor to enter clinical trials. Serum levels of flavopiridol obtained during phase I studies were sufficient to inhibit in vitro cancer cell growth. Because responses were observed in kidney cancer patients in the phase I trials, we performed a phase II trial of flavopiridol in this patient population.. Thirty-five minimally pretreated patients were accrued using a standard two-step mechanism. Flavopiridol (50 mg/m(2)/d) was administered by continuous infusion for 72 hours every 2 weeks, and response was evaluated every 8 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, at completion of drug infusion, and on day 7 of the first therapy cycle, and cell cycle parameters after phytohemagglutinin and interleukin-2 stimulation were assessed.. There were two objective responses (response rate = 6%, 95% confidence interval, 1% to 20%). The most common toxicities were asthenia, occurring in 83% of patients (grade 3 or 4 in 9%), and diarrhea, occurring in 77% of patients (grade 3 or 4 in 20%). Also, nine patients (26%) experienced grade 3 or 4 vascular thrombotic events, including one myocardial infarction, two transient neurologic ischemic attacks, four deep venous thrombosis, and two pulmonary emboli. Cell cycle studies did not reveal any effect of flavopiridol on stimulated PBMCs.. Flavopiridol, at the dose and schedule administered in this trial, is ineffective in metastatic renal cancer. In addition to the diarrhea observed in phase I studies, we also observed a higher incidence of asthenia and serious vascular thrombotic events than expected. Topics: Adult; Aged; Antineoplastic Agents; Asthenia; Bone Neoplasms; Carcinoma, Renal Cell; Diarrhea; Drug Administration Schedule; Female; Flavonoids; Humans; Kidney Neoplasms; Liver Neoplasms; Lung Neoplasms; Lymphatic Metastasis; Male; Middle Aged; Piperidines; Thrombosis; Treatment Outcome | 2000 |
27 other study(ies) available for alvocidib and Lung-Neoplasms
Article | Year |
---|---|
Flavopiridol's effects on metastasis in KRAS mutant lung adenocarcinoma cells.
There is still no clinically approved agent for mutant KRAS, which is the most common alteration in non-small-cell lung cancer (NSCLC). Flavopiridol is a semisynthetic flavonoid that inhibits cell growth through cyclin-dependent kinases in G1/S or G2/M of the cell cycle and induces apoptosis. In this study, we evaluated its effect on cellular apoptosis, survival, and metastasis mechanisms on KRAS mutant A549, Calu-1, and H2009 cell lines.. The cytotoxic effects of flavopiridol on NSCLC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability test. The cells were treated with 200 and 400 nM flavopiridol, and, then, apoptosis, survival, and metastasis-related protein expressions were determined by Western blot analysis. The antimetastatic effects of flavopiridol were assessed by wound healing and Galectin-3 activity assay.. Flavopiridol drastically affected toxicity in all KRAS mutant NSCLC cells at nanomolar concentrations. Also, it could efficiently inhibit wound healing and Galectin-3 activity in all the cells tested. However, the metastasis-related protein expressions did not reflect these obvious effects on blotting. p-Erk was activated as a cellular survival mechanism to escape apoptosis in all the cells tested.. Although there are many mechanisms that still need to be elucidated, flavopiridol can be used as a metastasis inhibitor and an apoptosis inducer in KRAS mutant NSCLC. Topics: A549 Cells; Adenocarcinoma of Lung; Apoptosis; Carcinoma, Non-Small-Cell Lung; Flavonoids; Humans; Lung Neoplasms; Mutation; Neoplasm Metastasis; Piperidines; Proto-Oncogene Proteins p21(ras) | 2019 |
The target landscape of clinical kinase drugs.
Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cytokines; Drug Discovery; fms-Like Tyrosine Kinase 3; Humans; Leukemia, Myeloid, Acute; Lung Neoplasms; Mice; Molecular Targeted Therapy; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proteomics; Xenograft Model Antitumor Assays | 2017 |
Comparison of cell cycle components, apoptosis and cytoskeleton-related molecules and therapeutic effects of flavopiridol and geldanamycin on the mouse fibroblast, lung cancer and embryonic stem cells.
Similarities and differences in the cell cycle components, apoptosis and cytoskeleton-related molecules among mouse skin fibroblast cells (MSFs), mouse squamous cell lung carcinomas (SqCLCs) and mouse embryonic stem cells (mESCs) are important determinants of the behaviour and differentiation capacity of these cells. To reveal apoptotic pathways and to examine the distribution and the role of cell cycle-cell skeleton comparatively would necessitate tumour biology and stem cell biology to be assessed together in terms of oncogenesis and embryogenesis. The primary objectives of this study are to investigate the effects of flavopiridol, a cell cycle inhibitor, and geldanamycin, a heat shock protein inhibitor on mouse somatic, tumour and embryonic stem cells, by specifically focusing on alterations in cytoskeletal proteins, cell polarity and motility as well as cell cycle regulators. To meet these objectives, expression of several genes, cell cycle analysis and immunofluorescence staining of intracellular cytoskeletal molecules were performed in untreated and flavopiridol- or geldanamycin-treated cell lines. Cytotoxicity assays showed that SqCLCs are more sensitive to flavopiridol than MSFs and mESCs. Keratin-9 and keratin-2 expressions increased dramatically whereas cell cycle regulatory genes decreased significantly in the flavopiridol-treated MSFs. Flavopiridol-treated SqCLCs displayed a slight increase in several cell cytoskeleton regulatory genes as well as cell cycle regulatory genes. However, gene expression profiles of mESCs were not affected after flavopiridol treatment except the Cdc2a. Cytotoxic concentrations of geldanamycin were close to each other for all cell lines. Cdkn1a was the most increased gene in the geldanamycin-treated MSFs. However, expression levels of cell cytoskeleton-associated genes were increased dramatically in the geldanamycin-treated SqCLCs. Our results revealing differences in molecular mechanisms between embryogenesis and carcinogenesis may prove crucial in developing novel therapeutics that specifically target cancer cells. Topics: Actins; Animals; Apoptosis; Benzoquinones; Cell Cycle; Cell Line, Tumor; Embryonic Stem Cells; Epithelial-Mesenchymal Transition; Fibroblasts; Flavonoids; Keratin-2; Lactams, Macrocyclic; Lung Neoplasms; Mice; Piperidines | 2016 |
Effects of flavopiridol on critical regulation pathways of CD133high/CD44high lung cancer stem cells.
Flavopiridol a semisynthetic flavone that inhibits cyclin-dependent kinases (CDKs) and has growth-inhibitory activity and induces a blockade of cell-cycle progression at G1-phase and apoptosis in numerous human tumor cell lines and is currently under investigation in phase II clinical trials. Cancer stem cells (CSCs) are comprised of subpopulation of cells in tumors that have been proposed to be responsible for recurrence and resistance to chemotherapy. The aim of the present study was to investigate the effects of flavopiridol in cancer stem cell cytoskeleton, cell adhesion, and epithelial to mesenchymal transition in CSCs.. The cells were treated with flavopiridol to determine the inhibitory effect. Cell viability and proliferation were determined by using the WST-1 assay. Caspase activity and immunofluorescence analyses were performed for the evaluation of apoptosis, cell cytoskeleton, and epithelial-mesenchymal transition (EMT) markers. The effects of flavopiridol on the cell cycle were also evaluated. Flow cytometric analysis was used to detect the percentages of CSCs subpopulation. We analyzed the gene expression patterns to predict cell cycle and cell cytoskeleton in CSCs by RT-PCR.. Flavopiridol-induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspases activity. Cell cycle analyses revealed that flavopiridol induces G1 phase cell cycle arrest. Flavopiridol significantly decreased the mRNA expressions of the genes that regulate the cell cytoskeleton and cell cycle components and cell motility in CSCs.. Our results suggest that Flavopiridol has activity against lung CSCs and may be effective chemotherapeutic molecule for lung cancer treatment. Topics: AC133 Antigen; Antineoplastic Agents; Carcinoma, Squamous Cell; Caspases; Cell Line, Tumor; Cell Proliferation; DNA, Neoplasm; Flavonoids; Flow Cytometry; Gene Expression Regulation, Neoplastic; Humans; Hyaluronan Receptors; Lung Neoplasms; Neoplastic Stem Cells; Piperidines; Polymerase Chain Reaction | 2016 |
Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems.
Oncogenic receptor tyrosine kinase (RTK) signaling through the Ras-Raf-Mek-Erk (Ras-MAPK) pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs) are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC) subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD), synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN). This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations), MDA-MB-468 [epidermal growth factor receptor (EGFR) overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2) overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb) signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Cyclin-Dependent Kinases; Drug Synergism; ErbB Receptors; Female; Flavonoids; Humans; Lung Neoplasms; MCF-7 Cells; Mice; Mice, Inbred BALB C; Mice, Knockout; Mutation; Niacinamide; Phenylurea Compounds; Piperidines; raf Kinases; ras Proteins; Receptor, ErbB-2; Sorafenib; Treatment Outcome; Tumor Burden; Xenograft Model Antitumor Assays | 2013 |
Retinoblastoma tumor suppressor gene expression determines the response to sequential flavopiridol and doxorubicin treatment in small-cell lung carcinoma.
Small-cell lung cancers (SCLC) are defective in many regulatory mechanisms that control cell cycle progression, i.e., functional retinoblastoma protein (pRb). Flavopiridol inhibits proliferation and induces apoptosis in SCLC cell lines. We hypothesized that the sequence flavopiridol followed by doxorubicin would be synergistic in pRb-deficient SCLC cells.. A H69 pRb-deficient SCLC cell line, H865, with functional pRb and H865 pRb small interfering RNA (siRNA) knockdown cells were used for in vitro and in vivo experiments. The in vivo efficiencies of various sequential combinations were tested using nude/nude athymic mice and human SCLC xenograft models.. Flavopiridol then doxorubicin sequential treatment was synergistic in the pRB-negative H69 cell line. By knocking down pRb with specific siRNA, H865 clones with complete pRb knockdown became sensitive to flavopiridol and doxorubicin combinations. pRb-deficient SCLC cell lines were highly sensitive to flavopiridol-induced apoptosis. pRb-positive H865 cells arrested in G0-G1 with flavopiridol exposure, whereas doxorubicin and all flavopiridol/doxorubicin combinations caused a G2-M block. In contrast, pRb-negative SCLC cells did not arrest in G0-G1 with flavopiridol exposure. Flavopiridol treatment alone did not have an in vivo antitumor effect, but sequential flavopiridol followed by doxorubicin treatment provided tumor growth control and a survival advantage in Rb-negative xenograft models, compared with the other sequential treatments.. Flavopiridol and doxorubicin sequential treatment induces potent in vitro and in vivo synergism in pRb-negative SCLC cells and should be clinically tested in tumors lacking functional pRB. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Small Cell; Cell Cycle; Cell Line, Tumor; Doxorubicin; Flavonoids; Genes, Retinoblastoma; Humans; Lung Neoplasms; Male; Mice; Piperidines; RNA, Small Interfering; Xenograft Model Antitumor Assays | 2009 |
Flavopiridol disrupts STAT3/DNA interactions, attenuates STAT3-directed transcription, and combines with the Jak kinase inhibitor AG490 to achieve cytotoxic synergy.
Up-regulated signal transducers and activators of transcription (STAT)-mediated signaling is believed to contribute to the pathogenesis of a variety of solid and hematologic cancers. Consequently, inhibition of STAT-mediated signaling has recently been proposed as a potential new therapeutic approach to the treatment of cancers. Having shown previously that the pan-cyclin-dependent kinase inhibitor flavopiridol binds to DNA and seems to kill cancer cells via that process in some circumstances, we evaluated the hypothesis that flavopiridol might consequently disrupt STAT3/DNA interactions, attenuate STAT3-directed transcription, and down-regulate STAT3 downstream polypeptides, including the antiapoptotic polypeptide Mcl-1. SDS-PAGE/immunoblotting and reverse transcription-PCR were used to assess RNA and polypeptide levels, respectively. DNA cellulose affinity chromatography and a nuclear elution assay were used to evaluate the ability of flavopiridol to disrupt STAT3/DNA interactions. A STAT3 luciferase reporter assay was used to examine the ability of flavopiridol to attenuate STAT3-directed transcription. Colony-forming assays were used to assess cytotoxic synergy between flavopiridol and AG490. Flavopiridol was found to (a) disrupt STAT3/DNA interactions (DNA cellulose affinity chromatography and nuclear elution assay), (b) attenuate STAT3-directed transcription (STAT3 luciferase reporter assay), and (c) down-regulate the STAT3 downstream antiapoptotic polypeptide Mcl-1 at the transcriptional level (reverse transcription-PCR and SDS-PAGE/immunoblotting). Furthermore, flavopiridol, but not the microtubule inhibitor paclitaxel, could be combined with the STAT3 pathway inhibitor AG490 to achieve cytotoxic synergy in A549 human non-small cell lung cancer cells. Collectively, these data suggest that flavopiridol can attenuate STAT3-directed transcription in a targeted fashion and may therefore be exploitable clinically in the development of chemotherapy regimens combining flavopiridol and other inhibitors of STAT3 signaling pathways. Topics: Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; DNA; Down-Regulation; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Flavonoids; Humans; Janus Kinase 1; Lung Neoplasms; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Phosphoproteins; Piperidines; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-bcl-2; RNA Polymerase II; STAT3 Transcription Factor; Transcription, Genetic; Tumor Cells, Cultured; Tyrphostins | 2006 |
Combined depletion of cell cycle and transcriptional cyclin-dependent kinase activities induces apoptosis in cancer cells.
Selective cyclin-dependent kinase (cdk) 2 inhibition is readily compensated. However, reduced cdk2 activity may have antiproliferative effects in concert with other family members. Here, inducible RNA interference was used to codeplete cdk2 and cdk1 from NCI-H1299 non-small cell lung cancer and U2OS osteosarcoma cells, and effects were compared with those mediated by depletion of either cdk alone. Depletion of cdk2 slowed G1 progression of NCI-H1299 cells and depletion of cdk1 slowed G2-M progression in both cell lines, with associated endoreduplication in U2OS cells. However, compared with the incomplete cell cycle blocks produced by individual depletion, combined depletion had substantial consequences, with G2-M arrest predominating in NCI-H1299 cells and apoptosis the primary outcome in U2OS cells. In U2OS cells, combined depletion affected RNA polymerase II expression and phosphorylation, causing decreased expression of the antiapoptotic proteins Mcl-1 and X-linked inhibitor of apoptosis (XIAP), effects usually mediated by inhibition of the transcriptional cdk9. These events do not occur after individual depletion of cdk2 and cdk1, suggesting that reduction of cdk2, cdk1, and RNA polymerase II activities all contribute to apoptosis in U2OS cells. The limited cell death induced by combined depletion in NCI-H1299 cells was significantly increased by codepletion of cdk9 or XIAP or by simultaneous treatment with the cdk9 inhibitor flavopiridol. These results show the potency of concomitant compromise of cell cycle and transcriptional cdk activities and may guide the selection of clinical drug candidates. Topics: Apoptosis; Bone Neoplasms; Carcinoma, Non-Small-Cell Lung; CDC2 Protein Kinase; Cell Division; Cell Line, Tumor; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase 9; Flavonoids; G1 Phase; G2 Phase; Humans; Lung Neoplasms; Neoplasms; Osteosarcoma; Piperidines; RNA Polymerase II; RNA, Small Interfering | 2006 |
Transcriptional profiling identifies cyclin D1 as a critical downstream effector of mutant epidermal growth factor receptor signaling.
Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain determine responsiveness to EGFR tyrosine kinase inhibitors in patients with advanced non-small cell lung cancer (NSCLC). The modulation of transcriptional pathways by mutant EGFR signaling is not fully understood. Previously, we and others identified a single base pair change leading to a threonine to methionine (T790M) amino acid alteration in the ATP-binding pocket of the EGFR as a common mechanism of acquired resistance. The gefitinib-resistant, T790M-mutant H1975 NSCLC cell line undergoes prominent growth arrest and apoptosis when treated with the irreversible EGFR inhibitor, CL-387,785. We did a transcriptional profiling study of mutant EGFR target genes that are differentially expressed in the "resistant" gefitinib-treated and the "sensitive" CL387,785-treated H1975 cells to identify the pivotal transcriptional changes in NSCLC with EGFR-activating mutations. We identified a small subset of early gene changes, including significant reduction of cyclin D1 as a result of EGFR inhibition by CL-387,785 but not by gefitinib. The reduction in cyclin D1 transcription was associated with subsequent suppression of E2F-responsive genes, consistent with proliferation arrest. Furthermore, cyclin D1 expression was higher in EGFR-mutant lung cancer cells compared with cells with wild-type EGFR. EGFR-mutant cells were routinely sensitive to the cyclin-dependent kinase inhibitor flavopiridol, confirming the functional relevance of the cyclin D axis. These studies suggest that cyclin D1 may contribute to the emergence of EGFR-driven tumorigenesis and can be an alternative target of therapy. Topics: Animals; Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cyclin D; Cyclin-Dependent Kinases; Cyclins; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Flavonoids; Gefitinib; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mutant Proteins; Mutation, Missense; Oligonucleotide Array Sequence Analysis; Piperidines; Quinazolines; Signal Transduction; Transcription, Genetic; Transfection | 2006 |
Growth inhibition and induction of apoptosis by flavopiridol in rat lung adenocarcinoma, osteosarcoma and malignant fibrous histiocytoma cell lines.
Flavopiridol is the potent inhibitor of cdks sharing its function with endogenous cdk inhibitors, and causes arrest at both the G1 and G2 phases of the cell cycle resulting in apoptosis in various tumor cell lines. Cyclin-dependent kinase inhibitor p16INK4a induces cell cycle arrest in G1 or G2 or both, and is inactivated in many malignant tumors. In this study, we focused on the effects of flavopiridol on chemically-induced rat lung adenocarcinoma, osteosarcoma and malignant fibrous histiocytoma (MFH) cell lines showing different pattern of p16INK4a status. The data demonstrated that flavopiridol inhibited cellular growth in a dose- and time-dependent manner, inducing apoptosis within 24 h in all cell lines at a concentration of 300 nM. The growth inhibition rate was the greatest for lung adenocarcinoma cells, lacking p16INK4a expression associated with methylation-mediated gene silencing; 83% at a concentration of 300 nM for 72-h treatment; while the growth of osteosarcoma and MFH cells, both expressing p16INK4a, were inhibited at similar levels; 54-61% for osteosarcoma and 61-64% for MFH cell lines. Then, we further investigated the influence of p16INK4a induction upon the effect of flavopiridol in p16INK4a-deficient lung adenocarcinoma cells. 5-aza 2'-deoxycytidine (5-Aza-CdR) induced p16INK4a expression and inhibited cellular growth in lung adenocarcinoma at a similar level to that with flavopiridol treatment. After the induction of p16INK4a expression by 5-Aza-CdR, the growth inhibition rates of flavopiridol in the p16INK4a-induced lung adenocarcinoma cells could not achieve comparable inhibition to that in the p16INK4a-deficient cells; the efficacy was reduced compared to original p16INK4a-deficient cells at each concentration of 50, 100 and 500 nM for 72-h treatment. These data indicate that flavopiridol shows cell type specific inhibition and possibly acts in a more compensatory manner for endogenous p16INK4a function in tumor cells having the aberrations of p16INK4a gene. Topics: Adenocarcinoma; Animals; Apoptosis; Bone Neoplasms; Cell Division; Cell Line, Tumor; Cyclin D1; Cyclin-Dependent Kinase 4; Cyclin-Dependent Kinase Inhibitor p16; Cyclin-Dependent Kinases; DNA Methylation; Flavonoids; Gene Expression Regulation, Neoplastic; Histiocytoma, Benign Fibrous; Lung Neoplasms; Osteosarcoma; Piperidines; Promoter Regions, Genetic; Proto-Oncogene Proteins; Rats; RNA, Messenger | 2004 |
Enhancement of radiation effects by combined docetaxel and flavopiridol treatment in lung cancer cells.
To evaluate the potential role and mechanism of docetaxel plus flavopiridol in modulating radiosensitivity in vitro and in vivo.. In vitro. H460 human lung carcinoma cells were treated with docetaxel (10 nM for 1 h, at t = 0 h) --> radiation (0-5 Gy, at t = 6 h) --> flavopiridol (120 nM for 24 h, at t = 8 h). Colony forming ability was measured to assess the modulation of sensitivity. Cell cycle redistribution was measured by flow cytometric analysis using propidium iodide. Percent apoptosis was also measured by flow cytometric analysis using 7-amino-actinomycin D staining. In vivo. H460 cell xenografts were used in nude mice. Tumors were grown subcutaneously on the flank, then treated with docetaxel (2.5 mg/kg, at t = 0 h) --> radiation (2 Gy, at t = 6 h) --> flavopiridol (1.25 mg/kg, at t = 8 h) for 5 consecutive days. Tumor growth delay was then measured and compared with the control group.. Docetaxel plus flavopiridol enhanced the effect of radiation. The maximum radiopotentiation and apoptosis were observed when the cells were treated with the sequence of docetaxel-->radiation-->flavopiridol both in vitro and in vivo. Flavopiridol and docetaxel induced G1 and G2/M arrest, respectively.. This study shows that docetaxel plus flavopiridol enhances the effects of radiation in vitro and in vivo. Our data suggest that the mechanism of radiopotentiation by combining flavopiridol and docetaxel involves an enhancement of apoptosis and changes of cell cycle by docetaxel and flavopiridol. Topics: Animals; Cell Survival; Combined Modality Therapy; Disease Models, Animal; Docetaxel; Drug Therapy, Combination; Female; Flavonoids; Humans; In Vitro Techniques; Lung Neoplasms; Mice; Mice, Nude; Neoplasm Transplantation; Piperidines; Probability; Radiation Dosage; Radiation-Sensitizing Agents; Sensitivity and Specificity; Survival Rate; Taxoids; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2004 |
Flavopiridol induces p53 via initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-reluctant cells to tumor necrosis factor.
Flavopiridol (FP) inhibits gene expression and causes apoptosis, and these effects cannot be explained by inhibition of cyclin-dependent kinases that govern cell cycle. The simple and established notion that FP is an inhibitor of transcription predicts its effects. Because Mdm-2 targets p53 for degradation, FP, as predicted, dramatically induced p53 by inhibiting Mdm-2. Once p53 was induced, restoration of transcription (by removal of FP) resulted in superinduction of p21 and Mdm-2. Similarly, low concentrations of FP (50 nm) induced p21 and Mdm-2 because of their initial down-regulation. A sustained decrease of Mdm-2/p21 expression and accumulation of p53 coincided with near-maximal cytotoxicity of FP at concentrations >100 nm. Induction of p53 was a marker, not a cause, of cytotoxicity. FP caused rapid apoptosis (caspase-dependent cell death) in p53-null leukemia cells. In these cells, FP-induced apoptosis was converted to growth arrest by inhibitors of caspases. In apoptosis-reluctant A549 and PC3M cancer cells, FP inhibited cell proliferation but did not cause apoptosis. Like typical inhibitors of transcription, FP sensitized cells to apoptotic stimuli, allowing tumor necrosis factor to cause rapid and massive apoptosis in otherwise apoptosis-reluctant cells. We discuss that, as a reversible inhibitor of transcription, FP can be used clinically in novel rational drug combinations. Topics: Apoptosis; Cell Line, Tumor; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Dose-Response Relationship, Drug; Drug Synergism; Flavonoids; HCT116 Cells; HL-60 Cells; Humans; Jurkat Cells; Lung Neoplasms; Male; Nuclear Proteins; Piperidines; Prostatic Neoplasms; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-mdm2; Transcription, Genetic; Tumor Necrosis Factor-alpha; Tumor Suppressor Protein p53; U937 Cells | 2004 |
Flavopiridol increases therapeutic ratio of radiotherapy by preferentially enhancing tumor radioresponse.
Recently we reported that inhibition of cyclin-dependent kinases (cdks) by flavopiridol enhanced the radiation response of murine ovarian carcinoma cells in culture. The purpose of this investigation was to extend these studies to in vivo tumor models and test whether flavopiridol increases the therapeutic ratio of radiotherapy.. Three transplantable syngeneic mouse tumors were used: mammary carcinoma (MCa-29), ovarian carcinoma (OCa-I), and a lymphoma (Ly-TH). Tumor treatment endpoints included growth delay, cure, and spontaneous lung metastases (OCa-I tumor). The normal tissue endpoint was survival of jejunal crypt cells quantified microscopically. A range of flavopiridol doses from 0.625 to 5.0 mg/kg were given systemically once or twice daily over 5, 10, or 20 days. Combined therapy flavopiridol treatments were initiated either several days before or shortly after the start of single dose or daily fractionated radiotherapy.. The major findings of this study are that all three tumors treated with flavopiridol alone responded by tumor growth delay. Two of the tumors (MCa-29 and Ly-TH) responded in a schedule-dependent manner with larger radiation enhancement factors when flavopiridol treatment was started a few hours after irradiation (radioenhancement factors [EF] Ly-TH = 2.04, EF MCa-29 = 1.50 for single dose irradiation). When combined with fractionated irradiation (2.6 Gy daily for 10 or 20 days), flavopiridol enhanced the response of the MCa-29 tumor by a factor of 1.25-1.46. A fractional radiation dose of 6 Gy in combination with flavopiridol produced a 62.5% cure rate compared with 25% tumor cure for radiation alone. A novel finding of this study was the demonstration of antimetastatic activity of flavopiridol in addition to its effect on the local primary tumor. Both the incidence and absolute number of lung metastasis were reduced when flavopiridol followed surgical removal of the large (10 mm) primary leg tumor. The normal jejunum treated with flavopiridol and radiation responded in a schedule independent manner and the degree of radioenhancement (EF, 1.05-1.06) was much less than for any of the tumors studied.. Therapeutic gain was achieved when flavopiridol treatment was initiated either before or after the start of radiotherapy. Flavopiridol shows promising clinical potential administered alone or in combination with other cytotoxic agents, including both chemotherapy and radiotherapy. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cyclin-Dependent Kinases; Dose Fractionation, Radiation; Drug Screening Assays, Antitumor; Enzyme Inhibitors; Female; Flavonoids; Jejunum; Lung Neoplasms; Mice; Mice, Inbred C3H; Ovarian Neoplasms; Piperidines; Radiation-Sensitizing Agents | 2004 |
E2F4 deficiency promotes drug-induced apoptosis.
E2F1 and E2F4 are known to have opposing roles in cell cycle control. In the present work, we examine the role of both E2F1 and E2F4 in apoptosis induced by three cyclin-dependent kinase inhibitors (roscovitine, BMS-387032, and flavopiridol) as well as by three established chemotherapeutic drugs (VP16, cisplatin and paclitaxel). We find that E2F4 levels are diminished following treatment with cyclin dependent kinase inhibitors (flavopiridol, roscovitine and BMS-387032) or with DNA damaging drugs (cisplatin and VP16). In contrast, each of these drugs induced E2F1. We find that mouse fibroblasts nullizygous for the E2F4 gene are more sensitive to apoptosis induced by roscovitine, flavopiridol, cisplatin, and VP16, whereas E2F1-deficient fibroblasts are less sensitive. Likewise, we find that RNAi-mediated reductions in E2F4 in human cancer cells results in increased drug sensitivity. Taken together, these results support a model in which E2F1 and E2F4 play opposing roles during drug-induced apoptosis. Topics: Animals; Antineoplastic Agents; Apoptosis; Breast Neoplasms; Carcinoma, Non-Small-Cell Lung; Cell Cycle Proteins; DNA-Binding Proteins; E2F Transcription Factors; E2F1 Transcription Factor; E2F4 Transcription Factor; Fibroblasts; Flavonoids; Humans; Lung Neoplasms; Mice; Mice, Knockout; Oxazoles; Piperidines; Protein Kinase Inhibitors; Purines; RNA, Small Interfering; Roscovitine; Thiazoles; Transcription Factors; Tumor Cells, Cultured | 2004 |
Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of Mcl-1.
Flavopiridol treatment can lead to apoptosis via a mechanism that has been associated with down-regulation of Mcl-1. Likewise, recent studies from our laboratory demonstrated that E2F1 leads to transcriptional repression of Mcl-1 and subsequently apoptosis. Given the ability of cyclin/cyclin-dependent kinase 2 antagonists to kill transformed cells, we surmised that flavopiridol may stabilize E2F1 and enhance apoptosis via repression of Mcl-1. Here we demonstrate that flavopiridol is associated with a dose-dependent increase in E2F1 protein levels, a corresponding reduction in Mcl-1, and apoptosis in H1299 lung carcinoma cells. Treatment of H1299 cells with 200 nM flavopiridol resulted in the rapid elevation of E2F1 and reduction in Mcl-1 levels within 12 h of treatment. The elevation of E2F1 and reduction in Mcl-1 clearly preceded the induction of apoptosis. Both H1299 and NIH3T3 fibroblast cell lines that constitutively express Mcl-1 under the control of the cytomegalovirus promoter have no reductions in Mcl-1 levels with flavopiridol treatment and are resistant to apoptosis induced by flavopiridol. H1299 cells that have E2F1 deleted through RNAi vector targeting are less sensitive to flavopiridol-induced cell death, and likewise, mouse embryo fibroblast cell lines deficient in E2F1 are less susceptible to apoptosis induced by flavopiridol compared with wild-type control fibroblasts. These data suggest that apoptosis induced by flavopiridol is dependent on the enhancement of E2F1 levels and the repression of Mcl-1. Topics: 3T3 Cells; Animals; Antineoplastic Agents; Apoptosis; Base Sequence; Carcinoma, Non-Small-Cell Lung; Cell Cycle Proteins; DNA Primers; DNA-Binding Proteins; E2F Transcription Factors; E2F1 Transcription Factor; Flavonoids; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Mice; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Piperidines; Proto-Oncogene Proteins c-bcl-2; Transcription Factors; Tumor Cells, Cultured | 2003 |
Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF)-alpha or TNF-related apoptosis-inducing ligand in human cancer cell lines.
Flavopiridol is one of the first cyclin-dependent kinase inhibitors undergoing clinical tests. We found that the combination treatment of flavopiridol (100-500 nM) with tumor necrosis factor (TNF)-alpha (10 ng/ml) induced a rapid and eminent apoptosis, 20 +/- 5% in 6-h treatment, in a human non-small cell lung carcinoma cell line, A549, as determined by the increase of sub-G(1) fraction in flow cytometry. A similar observation was also made in human colon cancer cell lines, HCT-116 and HCT-15, but not in Rat2, a rat fibroblast cell line. In A549 cells, the cytotoxic synergy by the combination treatment involved the activation of caspase-1, caspase-3, and caspase-8 and generated huge chromosomal degradation. The treatment schedules were so important that only the treatments of flavopiridol concomitantly with or followed by TNF-alpha showed the pronounced apoptosis in A549 cells. Prior treatment of TNF-alpha inhibited the apoptosis by the following combination treatment, leading to little cell death. Yet, such inhibition was reversed when 100 microM of 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole, a transcription inhibitor, was present during the TNF-alpha pretreatment, suggesting that the inhibitory pretreatment of TNF-alpha might involve antiapoptotic gene expression at the transcriptional level. TNF-alpha treatment resulted in nuclear factor (NF)-kappa B activation, revealed by NF-kappa B activity reporter assay. In contrast, flavopiridol was found to inhibit the NF-kappa B-dependent gene transcription, which might give an explanation for the synergistic effect of flavopiridol with TNF-alpha. TNF-related apoptosis-inducing ligand (TRAIL; 100 ng/ml) also caused a rapid and strong cytotoxic synergy with flavopiridol. In contrast to TNF-alpha, however, all of the treatment sequences supported the synergy by TRAIL and flavopiridol. The combination of flavopiridol with TNF-alpha or TRAIL may be of use for the development in cancer therapy. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Carcinoma, Small Cell; Caspase Inhibitors; Caspases; Colonic Neoplasms; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Fibroblasts; Flavonoids; Humans; Lung Neoplasms; Membrane Glycoproteins; NF-kappa B; Piperidines; Rats; Recombinant Proteins; TNF-Related Apoptosis-Inducing Ligand; Transcriptional Activation; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2003 |
Enhancement of depsipeptide-mediated apoptosis of lung or esophageal cancer cells by flavopiridol: activation of the mitochondria-dependent death-signaling pathway.
Treating cancer cells with depsipeptide, a novel antitumor agent currently in a phase II clinical trial, causes potent upregulation of p21/WAF1 expression and cell arrest at G1 and G2 checkpoints. p21/WAF1 upregulation, however, impedes the ability of depsipeptide to induce significant apoptosis. This study was designed to determine whether flavopiridol, a synthetic cyclin-dependent kinase inhibitor known to inhibit p21 expression in tumor cells, could enhance depsipeptide-mediated apoptosis in cultured lung and esophageal cancer cells.. Lung or esophageal cancer cells were exposed to depsipeptide, flavopiridol, or a combination of depsipeptide and flavopiridol. Cytotoxicity and apoptosis were quantitated by means of (4,5-dimethylthiazo-2-yl)-2,5-diphenyl tetrazolium bromide and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling-based assays, respectively. Cytosolic cytochrome c levels, caspase 9 activity, mitochondrial membrane depolarization, and dependence of apoptosis on caspase 9 in treated cells were studied to determine the role of the mitochondria in mediating apoptosis induced by this drug combination.. Flavopiridol completely abolished depsipeptide-mediated dose-dependent upregulation of p21/WAF1 expression. Combining flavopiridol with depsipeptide resulted in a 3- to 8-fold reduction of depsipeptide inhibitory concentration of 50% values that was closely paralleled by synergistic enhancement of apoptosis (4- to 10-fold higher than levels of cell death induced by either drug alone) in all cancer cell lines. The essential role of mitochondria in mediating cell death was indicated by robust translocation of cytochrome c from the mitochondria into the cytosol, 2.5- to 5-fold activation of caspase 9, severe disruption of mitochondrial inner membrane potential, and complete inhibition of apoptosis by the selective caspase 9 inhibitor. More important, this drug combination was not toxic to primary normal epithelial cells derived from the airway or skin.. The depsipeptide plus flavopiridol combination exhibits powerful and selective cytocidal activity against cancer but not normal cells. Apoptosis induced by this combination is mediated by the mitochondria-dependent death pathway. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinases; Cyclins; Depsipeptides; Drug Synergism; Enzyme Inhibitors; Esophageal Neoplasms; Flavonoids; Humans; Lung Neoplasms; Mitochondria; Peptides, Cyclic; Piperidines; Tumor Cells, Cultured | 2003 |
Flavopiridol potently induces small cell lung cancer apoptosis during S phase in a manner that involves early mitochondrial dysfunction.
Accumulating evidence indicates that small cell lung cancer (SCLC) is defective in many of the regulatory mechanisms that control cell cycle progression. The purpose of this study was to determine the effects of flavopiridol, a pan-cyclin-dependent kinase inhibitor, on growth and apoptosis of SCLC cell lines.. Cell growth was monitored using 3-(4,5dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide (MTT) and clonogenic assays. Induction of apoptosis was assessed using multiple assays, including flow cytometric determination of DNA content and mitochondrial membrane potential, terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL), and Western blot analysis of procaspase 3 and poly(ADP-ribose) polymerase cleavage.. Flavopiridol induced growth inhibition and cytotoxicity in multiple SCLC cell lines, with an IC(50) of 50-100 nM and an LD(50) of 150-200 nM in 72-h MTT assays. The cytotoxicity seen in the MTT assay proved to be apoptosis by several criteria. Interestingly, inhibition of caspase activation with the caspase inhibitor Boc-Asp(OMe)-CH(2)F reduced TUNEL labeling by 40% but did not have any effect on the loss of mitochondrial membrane potential (detected as early as 4 h after drug exposure) or cytotoxicity in MTT assays. These results suggest that the primary event in flavopiridol-induced apoptosis involves induction of mitochondrial dysfunction. Cells synchronized with aphidicolin at the G(1)-S border and treated with flavopiridol during S phase showed a marked increase in apoptosis compared with an asynchronous population or a population treated during G(2)-M. Despite the increased apoptosis, a significant proportion of synchronized cells proceeded through S, G(2)-M, and into G(1) phase in the presence of flavopiridol, demonstrating that a high-grade cell cycle arrest is not required for apoptosis. Cells synchronized at the G(1)-S border treated with a short exposure to flavopiridol also showed more than a 10-fold decrease in clonogenicity compared with asynchronous cells treated identically.. Taken together, these data demonstrate that flavopiridol potently and selectively induces SCLC apoptosis preferentially during S phase, in a manner that involves early mitochondrial dysfunction without a requirement for a high-grade block to cell cycle progression. Furthermore, clonogenicity data suggests that prior S phase synchronization could be a highly effective way of enhancing the efficacy of bolus or short infusions of flavopiridol in the clinical setting. Topics: Aphidicolin; Apoptosis; Blotting, Western; Carcinoma, Small Cell; Caspase 3; Caspases; Cell Division; Enzyme Inhibitors; Flavonoids; Flow Cytometry; Humans; In Situ Nick-End Labeling; Lung Neoplasms; Membrane Potentials; Mitochondria; Piperidines; Poly(ADP-ribose) Polymerases; S Phase; Tetrazolium Salts; Thiazoles; Tumor Cells, Cultured; Tumor Stem Cell Assay | 2003 |
Flavopiridol-induced apoptosis during S phase requires E2F-1 and inhibition of cyclin A-dependent kinase activity.
Transformed cells are selectively sensitized to apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol after their recruitment to S phase. During S phase, cyclin A-dependent kinase activity neutralizes E2F-1 allowing orderly S phase progression. Inhibition of cyclin A-dependent kinase by flavopiridol could cause inappropriately persistent E2F-1 activity during S phase traversal and exit. Transformed cells, with high baseline levels of E2F-1 activity, may be particularly sensitive to cyclin A-dependent kinase inhibition, as the residual level of E2F-1 activity that persists may be sufficient to induce apoptosis. Here, we demonstrate that flavopiridol treatment during S phase traversal results in persistent expression of E2F-1. The phosphorylation of E2F-1 is markedly diminished, whereas that of the retinoblastoma protein is minimally affected, so that E2F-1/DP-1 heterodimers remain bound to DNA. In addition, manipulation of E2F-1 levels leads to predictable outcomes when cells are exposed to flavopiridol during S phase. Tumor cells expressing high levels of ectopic E2F-1 are more sensitive to flavopiridol-induced apoptosis during S phase compared with parental counterparts, and high levels of ectopic E2F-1 expression are sufficient to sensitize nontransformed cells to flavopiridol. Furthermore, E2F-1 activity is required for flavopiridol-induced apoptosis during S phase, which is severely compromised in cells homozygous for a nonfunctional E2F-1 allele. Finally, the response to flavopiridol during S phase is blunted in cells expressing a nonphosphorylatable E2F-1 mutant incapable of binding cyclin A, suggesting that the modulation of E2F-1 activity produced by flavopiridol-mediated cyclin-dependent kinase inhibition is critical for the apoptotic response of S phase cells. Topics: Antineoplastic Agents; Apoptosis; Bone Neoplasms; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Cycle Proteins; Cell Line, Transformed; Cell Line, Tumor; DNA-Binding Proteins; DNA, Neoplasm; Drug Synergism; E2F Transcription Factors; E2F1 Transcription Factor; Enzyme Inhibitors; Flavonoids; Humans; Lung Neoplasms; Osteosarcoma; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Protein Kinases; S Phase; Transcription Factor DP1; Transcription Factors | 2003 |
Selective sensitization of transformed cells to flavopiridol-induced apoptosis following recruitment to S-phase.
Flavopiridol is a potent inhibitor of cyclin-dependent kinases (cdks). In a large proportion of solid tumor cell lines, the initial response to flavopiridol is cell cycle arrest. NCI-H661 non-small cell lung cancer cells are representative of a subset of more sensitive cell lines in which apoptosis is observed during the first 24 h of drug exposure. Analysis of the apoptotic population indicates that cells in S-phase are preferentially dying. In addition, cells are sensitized to flavopiridol following recruitment to S-phase, whether accomplished by synchronization or by treatment with noncytotoxic concentrations of chemotherapy agents that impose an S-phase delay. Combinations of gemcitabine or cisplatin, followed by flavopiridol at concentrations that correlate with cdk inhibition, produce sequence-dependent cytotoxic synergy. A survey of paired cell lines, including WI38 diploid fibroblasts or normal human bronchial epithelial cells, along with their SV40-transformed counterparts, demonstrates that treatment with flavopiridol during S-phase is selectively cytotoxic to transformed cells. These data suggest that treatment during S-phase may maximize responses to flavopiridol and that the administration of flavopiridol after chemotherapy agents that cause S-phase accumulation may be an efficacious antitumor strategy. Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Bronchi; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Transformed; Cisplatin; Cyclin-Dependent Kinases; Deoxycytidine; DNA; DNA, Neoplasm; Drug Interactions; Enzyme Inhibitors; Epithelial Cells; Fibroblasts; Flavonoids; Gemcitabine; Humans; Lung Neoplasms; Piperidines; S Phase; Tumor Cells, Cultured | 2002 |
Synergistic antitumor effect of chemotherapy and antisense-mediated ablation of the cell cycle inhibitor p27KIP-1.
The fraction of noncycling cells found in most tumors represents a major obstacle for conventional chemotherapy. Here, we show that the cyclin-dependent kinase inhibitor p27KIP-1 accumulates to high levels in human tumors grown in immunodeficient mice. We have developed an antisense phosphorothioate oligodeoxynucleotide (ODN) that efficiently inhibits the expression of p27KIP-1 both in vitro and in vivo. Treatment of cultured tumor cells with this ODN sensitized the cells to all chemotherapeutic drugs tested, including the new kinase inhibitor flavopiridol. Furthermore, striking synergistic effects of the p27KIP-1 ODN and flavopiridol were observed in vivo with respect to both the induction of apoptotic cell death and the inhibition of tumor growth. Importantly, p27KIP-1 ODN treatment alone did not provoke any detectable tumor enhancement. A mechanistic explanation for these findings might be derived from the observation that p27 ODN treatment of cultured tumor cells led to a clear increase in the fraction of S-G2 cells in the absence of an efficient progression into M phase. These findings may have direct relevance to the development of new approaches for the treatment of human cancer. Topics: Adenocarcinoma; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Cell Cycle; Cell Cycle Proteins; Cyclin-Dependent Kinase Inhibitor p27; Cyclin-Dependent Kinases; Drug Synergism; Flavonoids; HeLa Cells; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Microtubule-Associated Proteins; Mitosis; Oligonucleotides, Antisense; Piperidines; Prostatic Neoplasms; Thionucleotides; Transfection; Tumor Suppressor Proteins; Xenograft Model Antitumor Assays | 2000 |
Induction of differentiation accompanies inhibition of Cdk2 in a non-small cell lung cancer cell line.
Induction of differentiation in a variety of model systems is accompanied by cell cycle exit and inhibition of Cdk2 kinase activity. We asked whether inhibition of Cdk2 activity is sufficient to allow differentiation to occur in a non-small cell lung cancer cell line. Treatment of NCI-H358 with flavopiridol, an inhibitor of multiple Cdk's, resulted in growth arrest and induction of mucinous differentiation. The onset of differentiation coincided temporally with loss of Cdk2 kinase activity. Western analysis revealed that flavopiridol treatment resulted in depletion of both cyclin E and D1, suggesting that loss of the regulatory subunits is at least partially responsible for the loss of Cdk kinase activity. Similarly, roscovitine, an inhibitor of Cdk's 1, 2, and 5, but not Cdk4, also induced differentiation in NCI-H358, although the resulting pattern of expression of cell cycle regulatory genes differed from the pattern obtained with flavopiridol. Furthermore, stable expression of an antisense Cdk2 construct in NCI-H358 also resulted in the appearance of a marker of mucinous differentiation. These results show that the inhibition of activity of cyclin dependent kinases, particularly Cdk2, by multiple different mechanisms is accompanied by differentiation. Thus, induction of differentiation is one potential mechanism of action for agents that down-regulate Cdk activity. Topics: Carcinoma, Non-Small-Cell Lung; CDC2-CDC28 Kinases; Cell Differentiation; Cell Division; Cyclin D; Cyclin D1; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinases; Cyclins; Enzyme Inhibitors; Flavonoids; G1 Phase; Gene Expression Regulation, Neoplastic; Humans; Lung Neoplasms; Neoplasm Proteins; Piperidines; Protein Serine-Threonine Kinases; Purines; Roscovitine; Signal Transduction; Transfection; Tumor Cells, Cultured | 1999 |
Identification of cytosolic aldehyde dehydrogenase 1 from non-small cell lung carcinomas as a flavopiridol-binding protein.
The synthetic flavone flavopiridol can be cytostatic or cytotoxic to mammalian cells, depending on the concentration of the drug and the duration of exposure. It has been shown to inhibit the cyclin-dependent kinase (CDK) family of cell cycle regulatory enzymes. However, the existence of additional potential targets for drug action remains a matter of interest to define. To identify cellular targets, flavopiridol was immobilized. CDKs, particularly CDK 4, bound weakly to immobilized flavopiridol when ATP was absent but not in its presence. Two proteins with molecular weights of 40 kDa and 120 kDa had high affinities to the immobilized flavopiridol independent of the presence of ATP. They were present in all cell lines analyzed: cervical (HeLa), prostate and non-small cell lung carcinoma (NSCLC) cell lines. A 60-kDa protein, which was present only in NSCLC cells and bound similarly well to immobilized flavopiridol, was identified as cytosolic aldehyde dehydrogenase class 1 (ALDH-1). The level of this protein correlated with the resistance of NSCLC cell lines to cytotoxicity caused by 500 nM flavopiridol but not higher flavopiridol concentrations. Despite binding to ALDH-1, there was no inhibition of dehydrogenase activity by flavopiridol concentrations as high as 20 microM and flavopiridol was not metabolized by ALDH-1. The results suggest that high cellular levels of ALDH-1 may reduce cytotoxicity of flavopiridol and contribute to relative resistance to the drug. This is the first report that flavopiridol binds to proteins other than CDKs. Topics: Aldehyde Dehydrogenase; Aldehyde Dehydrogenase 1 Family; Carcinoma, Non-Small-Cell Lung; Carrier Proteins; Chromatography, Affinity; Cytosol; Dose-Response Relationship, Drug; Flavonoids; HeLa Cells; Humans; Isoenzymes; Lung Neoplasms; Piperidines; Retinal Dehydrogenase; Tumor Cells, Cultured; Tumor Stem Cell Assay | 1999 |
Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines.
Flavopiridol, a synthetic flavone that inhibits tumor growth in vitro and in vivo, is a potent cyclin-dependent kinase (cdk) inhibitor presently in clinical trials. In the present study, the effect of 100-500 nM flavopiridol on a panel of non-small cell lung cancer cell lines was examined. All express a wild-type retinoblastoma susceptibility protein and lack p16INK4A, and only A549 cells are known to express wild-type p53. During 72 h of treatment, flavopiridol was shown to be cytotoxic to all seven cell lines, as measured by trypan blue exclusion, regardless of whether cells were actively cycling. In most cycling cells, cytotoxicity was preceded or accompanied by cell cycle arrest. Cell death resulted in the appearance of cells with a sub-G1 DNA content, suggestive of apoptosis, which was confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay and by demonstration of cleavage of caspase targets including poly(ADP-ribose) polymerase, p21Waf1, and p27Kip1. At doses at or below 500 nM, maximal cytotoxicity required 72 h of exposure. Although flavopiridol resulted in the accumulation of p53 in A549 cells, flavopiridol-mediated apoptosis was p53 independent because it occurred to the same degree in A549 cells in which p53 was targeted for degradation by HPV16E6 expression. The data indicate that flavopiridol has activity against non-small cell lung cancers in vitro and is worthy of continued clinical development in the treatment of this disease. Topics: Antineoplastic Agents; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cyclin-Dependent Kinases; Enzyme Inhibitors; Flavonoids; Humans; Lung Neoplasms; Piperidines; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 1999 |
Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration.
Flavopiridol, the first potent cyclin-dependent kinase inhibitor to undergo clinical trials as an antineoplastic agent in the United States, has attracted considerable attention because of its unique cellular targets and its ability to kill noncycling tumor cells in vitro. To better understand how flavopiridol might be used clinically, the present study used colony-forming assays to examine the cytotoxicity resulting from combining flavopiridol with eight other antineoplastic agents in four different administration schedules in A549 human non-small cell lung carcinoma cells in vitro. Cytotoxic synergy, as assessed by the median effect method, resulted when flavopiridol was combined with seven of the eight tested antineoplastic agents but was highly dependent upon administration schedule. Cisplatin was the only agent that resulted in sequence-independent synergy when combined with flavopiridol. For paclitaxel, cytarabine, topotecan, doxorubicin, and etoposide, synergy was more pronounced when the agents were administered before flavopiridol rather than concomitant with or following flavopiridol. Examination suggested that this sequence dependence reflected arrest of cells in G1 and G2 phases of the cell cycle during and for 24 h following flavopiridol treatment. Interestingly, 48-72 h after flavopiridol removal, the fraction of surviving cells in S phase increased 2-3-fold relative to untreated controls. Consistent with these results, administration of flavopiridol for 24 h followed 3 days later by exposure to an S phase-active agent (cytarabine or 5-fluorouracil) resulted in a highly synergistic interaction. These results highlight the importance of administration schedule when combining flavopiridol with other agents and provide a starting point for examining the effect of flavopiridol in drug combinations in vivo. Topics: Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Non-Small-Cell Lung; Carmustine; Cisplatin; Cyclin-Dependent Kinases; Cytarabine; Doxorubicin; Drug Administration Schedule; Drug Synergism; Etoposide; Flavonoids; Fluorouracil; Humans; Lung Neoplasms; Paclitaxel; Piperidines; Tumor Stem Cell Assay | 1997 |
Modulation by (iso)flavonoids of the ATPase activity of the multidrug resistance protein.
The multidrug resistance protein (MRP) is an ATP-dependent transport protein for organic anions, as well as neutral or positively charged anticancer agents. In this study we report that dinitrophenyl-S-glutathione increases ATPase activity in plasma membrane vesicles prepared from the MRP-overexpressing cell line GLC4/ADR. This ATPase stimulation parallels the uptake of DNP-SG in these vesicles. We also show that the (iso)flavonoids genistein, kaempferol and flavopiridol stimulate the ATPase activity of GLC4/ADR membranes, whereas genistin has no effect. The present data are consistent with the hypothesis that certain (iso)flavonoids affect MRP-mediated transport of anticancer drugs by a direct interaction with MRP. Topics: Adenosine Triphosphatases; ATP-Binding Cassette Transporters; Carcinoma, Small Cell; Cell Membrane; Drug Resistance, Multiple; Flavonoids; Genistein; Glutathione; Humans; Isoflavones; Kaempferols; Lung Neoplasms; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Piperidines; Quercetin; Tumor Cells, Cultured | 1997 |
Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells.
Flavopiridol (NSC 649890, L86-8275), a potent inhibitor of cyclin-dependent kinase 1/p34cdc2 phosphorylation and kinase activity, is currently undergoing Phase I clinical testing as a potential antineoplastic agent. Previous studies have suggested that flavopiridol is cytostatic but not cytotoxic when applied to exponentially growing cells. In the present study, various human tumor cell lines were assayed for trypan blue exclusion and ability to form colonies after exposure to flavopiridol under a variety of growth conditions. When log phase A549 non-small cell lung cancer cells were examined 72 h after the start of a 24-h flavopiridol exposure, as many as 90% of the cells accumulated trypan blue. A 24-h exposure to 250-300 nM resulted in trypan blue uptake in 50% of A549 cells at 72 h and a 50% reduction in colony formation. Similar results were observed in HCT8 ileocecal adenocarcinoma, T98G glioblastoma, MCF-7 breast adenocarcinoma, and HL-60 leukemia cells. With A549 cells, identical results were obtained in actively growing logarithmic phase cells and growth-arrested confluent cells. Treatment with the DNA synthesis inhibitor aphidicolin only minimally affected the cytotoxicity of flavopiridol. In contrast, the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole or the protein synthesis inhibitor cycloheximide reduced the cytotoxicity of flavopiridol. These results suggest that: (a) flavopiridol is not only cytostatic, but also cytotoxic to a variety of human tumor cell lines; (b) flavopiridol is equally active against cycling and noncycling A549 cells; and (c) RNA and protein synthesis appear to play a role in flavopiridol-induced cytotoxicity. Topics: Antineoplastic Agents; Aphidicolin; Apoptosis; Cell Cycle; Cell Survival; Cycloheximide; Flavonoids; Humans; Lung Neoplasms; Piperidines; Tumor Cells, Cultured | 1996 |