alvocidib has been researched along with Hematologic-Neoplasms* in 5 studies
4 review(s) available for alvocidib and Hematologic-Neoplasms
Article | Year |
---|---|
Combining proteasome with cell cycle inhibitors: a dual attack potentially applicable to multiple hematopoietic malignancies.
Topics: Boronic Acids; Bortezomib; Cyclin-Dependent Kinases; Enzyme Inhibitors; Flavonoids; Hematologic Neoplasms; Humans; NF-kappa B; Piperidines; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines | 2011 |
Recent progress in the discovery and development of cyclin-dependent kinase inhibitors.
Cyclin-dependent kinases (CDKs) have long been known to be the main facilitators of the cell proliferation cycle. However, they also play important roles in the regulation of the RNA polymerase II transcription cycle. Cancer cells display aberrant cell cycle regulation to gain proliferative advantages and they also appear to have an exaggerated dependence on RNA polymerase II transcriptional activity to sustain pro-survival and antiapoptotic signalling. A picture is now starting to emerge that both the cell-cycle and transcriptional functions of CDKs can be exploited pharmacologically with CDK inhibitors that possess appropriate selectivity profiles. In this article, recent advances into these mechanistic insights and how they can guide clinical development in terms of choice of indication are reviewed, as well as combinations with existing chemotherapies. An overview is also given of recent clinical trial results with the lead CDK inhibitor drug candidates seliciclib (CYC202, (R)-roscovitine; Cyclacel) and alvocidib (flavopiridol; Aventis-NCI), as well as the development of other clinical entries and advanced preclinical compounds. The discussion focuses on oncology, but we point out recent results with CDK inhibitors in virology and nephrology. Topics: Amino Acid Sequence; Animals; Antineoplastic Agents; Breast Neoplasms; Cell Proliferation; Clinical Trials as Topic; Cyclin-Dependent Kinases; Drug Resistance, Neoplasm; Female; Flavonoids; Glomerulonephritis; Hematologic Neoplasms; HIV Infections; Humans; Molecular Sequence Data; Piperidines; Protein Kinase Inhibitors; Purines; Roscovitine; Transcription, Genetic | 2005 |
Hematologic malignancies: new developments and future treatments.
An increasing number of unique active new chemotherapeutic and biologic agents are currently available for clinical research studies. Nucleoside analogs in development for non-Hodgkin's lymphoma (NHL) include clofarabine, troxacitabine, and bendamustine, a hybrid of an alkylating nitrogen mustard group and a purine-like benzimidazole, with demonstrated activity in NHL. Drugs directed at the cell cycle include flavopiridol and UCN-01. The proteasome plays a pivotal role in cellular protein regulation and activation of NFkappaB, which maintains cell viability through the transcription of inhibitors of apoptosis. PS-341 is a specific, selective inhibitor of the 26S proteasome which induces apoptosis and has activity in cell types characterized by overexpression of Bcl-2. Response rates of 50%, including complete remissions, have been reported using this agent in patients with refractory multiple myeloma. Studies are ongoing in NHL and chronic lymphocytic leukemia. G3139, an antisense oligonucleotide, has shown promise in early studies. Rituximab has revolutionized the treatment of NHL. However, other active antibodies are now available, including alemtuzumab, epratuzumab, and Hu1D10. The radioimmunoconjugates (90)Y-ibritumomab tiuxetan and (131)I-tositumomab may also play an important role in the management of NHL. Future therapeutic strategies should involve rational combinations of new chemotherapy drugs, biologic agents, and antisense compounds to increase the cure rate in patients with lymphoma. Topics: Adenine Nucleotides; Alemtuzumab; Alkaloids; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Monoclonal, Murine-Derived; Antibodies, Neoplasm; Antineoplastic Agents; Apoptosis; Arabinonucleosides; Bendamustine Hydrochloride; Boronic Acids; Bortezomib; Cell Cycle; Cell Survival; Clofarabine; Cytosine; Dioxolanes; Flavonoids; Hematologic Neoplasms; Humans; Immunoconjugates; Leukemia, Lymphocytic, Chronic, B-Cell; Lymphoma; Lymphoma, Non-Hodgkin; Multiple Myeloma; NF-kappa B; Nitrogen Mustard Compounds; Oligonucleotides, Antisense; Peptide Hydrolases; Piperidines; Protease Inhibitors; Proteasome Endopeptidase Complex; Pyrazines; Remission Induction; Rituximab; Staurosporine; Thionucleotides | 2002 |
Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies.
The majority of hematopoietic malignancies have aberrancies in the retinoblastoma (Rb) pathway. Loss in Rb function is, in most cases, a result of the phosphorylation and inactivation of Rb by the cyclin-dependent kinases (cdks), main regulators of cell cycle progression. Flavopiridol, the first cdk modulator tested in clinical trials, is a flavonoid that inhibits several cdks with evidence of cell cycle block. Other interesting preclinical features are the induction of apoptosis, promotion of differentiation, inhibition of angiogenic processes and modulation of transcriptional events. Initial clinical trials with infusional flavopiridol demonstrated activity in some patients with non-Hodgkin's lymphoma, renal, prostate, colon and gastric carcinomas. Main side-effects were secretory diarrhea and a pro-inflammatory syndrome associated with hypotension. Phase 2 trials with infusional flavopiridol in CLL and mantle cell lymphoma, other schedules and combination with standard chemotherapies are ongoing. The second cdk modulator tested in clinical trials, UCN-01, is a potent protein kinase C inhibitor that inhibits cdk activity in vitro as well. UCN-01 blocks cell cycle progression and promotes apoptosis in hematopoietic models. Moreover, UCN-01 is able to abrogate checkpoints induced by genotoxic stress due to modulation in chk1 kinase. The first clinical trial of UCN-01 demonstrated very prolonged half-life (approximately 600 h), 100 times longer than the half-life observed in preclinical models. This effect is due to high binding affinity of UCN-01 to the human plasma protein alpha-1-acid glycoprotein. Main side-effects in this trial were headaches, nausea/vomiting, hypoxemia and hyperglycemia. Clinical activity was observed in patients with melanoma, non-Hodgkin's lymphoma and leiomyosarcoma. Of interest, a patient with anaplastic large cell lymphoma refractory to high-dose chemotherapy showed no evidence of disease after 3 years of UCN-01 therapy. Trials of infusional UCN-01 in combination with Ara-C or gemcitabine in patients with acute leukemia and CLL, respectively, have commenced. In conclusion, flavopiridol and UCN-01 are cdk modulators that reach biologically active concentrations effective in modulating CDK in vitro, and show encouraging results in early clinical trials in patients with refractory hematopoietic malignancies. Although important questions remain to be answered, these positive experiences will hopefully increase the therapeutic modali Topics: Alkaloids; Cell Cycle; Clinical Trials as Topic; Cyclin-Dependent Kinases; Enzyme Inhibitors; Flavonoids; Hematologic Neoplasms; Humans; Piperidines; Retinoblastoma Protein; Signal Transduction; Staurosporine | 2001 |
1 other study(ies) available for alvocidib and Hematologic-Neoplasms
Article | Year |
---|---|
Discovery of 2H-benzo[b][1,4]oxazin-3(4H)-one derivatives as potent and selective CDK9 inhibitors that enable transient target engagement for the treatment of hematologic malignancies.
Cyclin-dependent kinase 9 (CDK9) is a transcriptional regulator and a potential therapeutic target in hematologic malignancies. Selective and transient CDK9 inhibition reduces Mcl-1 expression and induces apoptosis in Mcl-1-dependent tumor cells for survival. Here, we describe our efforts to discover a novel series of 2H-benzo[b][1,4]oxazin-3(4H)-one as CDK9 inhibitors. Compound 32k was identified as a selective CDK9 inhibitor with short pharmacokinetic and physicochemical properties suitable for intravenous administration. Short-term treatment with 32k resulted in a rapid dose-dependent decrease in cellular p-Ser2-RNAPII, Mcl-1 and c-Myc, leading to apoptosis in the MV4-11 cell line. Correspondingly, significant in vivo antitumor efficacy was observed in xenograft models derived from multiple hematological tumors with intermittent 32k dosing. These results provide evidence that selective transient CDK9 inhibitors could be used for the treatment of hematologic malignancies. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cyclin-Dependent Kinase 9; Hematologic Neoplasms; Humans; Myeloid Cell Leukemia Sequence 1 Protein; Protein Kinase Inhibitors | 2022 |