alvimopan-anhydrous has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for alvimopan-anhydrous and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
The selective mu opioid receptor antagonist, alvimopan, improves delayed GI transit of postoperative ileus in rats.
Postoperative ileus (POI) is often exacerbated by opioid analgesic use during and following surgery, since mu opioid receptor activation results in a further delay of gastrointestinal (GI) transit. The effects of alvimopan, a novel, selective, and peripherally acting mu opioid receptor antagonist, and the reference compound methylnaltrexone, upon POI were investigated in rats. Under isoflurane anesthesia, POI was induced by laparotomy with intestinal manipulation. Immediately after the surgery, the rats received (51)Cr by gavage. Three hours after the surgery, the rats were sacrificed and GI transit was estimated using the geometric center (GC) of (51)Cr. Alvimopan (0.1-3 mg/kg) or methylnaltrexone (100 mg/kg) were administered by gavage either before or after the surgery, with or without morphine administration (1 mg/kg). GI transit was delayed by intestinal manipulation (GC = 2.92 +/- 0.17). Alvimopan (1 and 3 mg/kg) significantly reversed this delayed GI transit when administered 45 min prior to surgery. However, the effects of alvimopan were less pronounced when administered following surgery. Morphine administration further delayed GI transit induced by intestinal manipulation (GC = 1.97 +/- 0.11). Under these conditions, alvimopan (1 and 3 mg/kg) also significantly improved delayed GI transit when administered before surgery. Methylnaltrexone was inactive under all experimental conditions. These data suggest that mu opioid receptors play a role in the pathogenesis of POI, and that the clinical benefit reported to be afforded by alvimopan may be in part mediated via inhibition of an endogenous opioid release as well as blockade of the unwanted GI actions of analgesic agents. Topics: Analgesics, Opioid; Analysis of Variance; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Gastrointestinal Transit; Ileus; Laparotomy; Male; Naltrexone; Narcotic Antagonists; Piperidines; Postoperative Complications; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley | 2006 |