altrenogest and Stillbirth

altrenogest has been researched along with Stillbirth* in 2 studies

Trials

2 trial(s) available for altrenogest and Stillbirth

ArticleYear
Effect of a combination of altrenogest and double PGF2α administrations on farrowing variation, piglet performance and colostrum IgG.
    Theriogenology, 2022, Oct-01, Volume: 191

    The variation of gestation length in sows leads to difficulties performing farrowing supervision. The present study was performed to investigate whether oral administration of altrenogest until 112 days of gestation and double administration of PGF2α at 113 days of gestation can synchronise the onset of parturition in sows and minimise deleterious effects on the incidence of stillbirths and colostrum quality. Additionally, the effects of synchronised farrowing on colostrum yield and piglet birth weight, colostrum intake and survival rate of piglets until seven days of postnatal life were also investigated. In total, 193 Landrace x Yorkshire crossbred sows were randomly allocated according to parity number into two groups, i.e. control (n = 95) and treatment (n = 98). The control sows were allowed to farrow naturally. The treatment sows were orally administered 20 mg per day of altrenogest for four days from 109 to 112 days of gestation and were administered PGF2α twice on day 113 of gestation. Individual body weight at birth and 24 h after birth of piglets in all litters were determined in both control (n = 1609) and treatment (n = 1707) groups. Colostrum consumption of all piglets, colostrum yield, colostrum IgG and serum progesterone of sows were determined. On average, the total number of piglets born per litter were 17.0 ± 3.1. The proportion of sows farrowed before 114 days of gestation was higher in the control than the treatment group (8.4% and 2.0%, respectively, P = 0.05) and 92.8% of sows in the treatment group farrowed on day 114 of gestation. The percentage of stillborn piglets per litter did not differ significantly between control and treatment groups (4.5% and 4.6%, respectively). Colostrum yield of sows did not differ between control and treatment groups (5.52 ± 0.13 and 5.28 ± 0.12 kg, respectively, P = 0.174). However, colostrum intake of piglets was lower in the treatment than the control group (354.7 ± 6.6 and 381.2 ± 7.0 g, respectively, P = 0.012). Colostrum IgG was higher in the control than the treatment group (41.2 ± 1.1 and 37.3 mg per ml, P = 0.013). In conclusion, altrenogest treatment from 109 to 112 days and double administrations of PGF2α on day 113 of gestation can control gestation length in sows. No deleterious effects of this protocol on the incidence of stillbirths and sow colostrum yield were detected. However, piglet colostrum intake and colostrum IgG were compromised. Thus, care of newborn piglets in the treatment gr

    Topics: Animals; Colostrum; Dinoprost; Female; Immunoglobulin G; Lactation; Pregnancy; Stillbirth; Swine; Swine Diseases; Trenbolone Acetate

2022
Altrenogest and progesterone therapy during pregnancy in bottlenose dolphins (Tursiops truncatus) with progesterone insufficiency.
    Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians, 2012, Volume: 43, Issue:2

    Progesterone production is essential for growth and development of the conceptus during pregnancy. Abnormal development of the corpus luteum (CL) after conception can result in early embryonic loss or fetal abortion. Routine monitoring of bottlenose dolphin (Tursiops truncatus) pregnancy after artificial insemination or natural conception with ultrasonography and serum progesterone determination has allowed for the establishment of expected fetal growth rates and hormone concentrations. Using these monitoring techniques, we revealed four pregnant dolphins (12-24 yr old) with abnormally low progesterone production indicative of luteal insufficiency. Once diagnosed, animals were placed on altrenogest (0.044-0.088 mg/kg once daily) alone or with oral progesterone (50-200 mg twice daily). Doses of hormone were increased or decreased in each animal based on how fetal skull biparietal and thoracic growth rates compared with published normal values. Hormones were withdrawn starting from day 358 of gestation in animals 1 and 2, with labor occurring 6 and 7 days after withdrawal and at 376 and 373 days of gestation, respectively. Both deliveries were dystocic, with each calf requiring manual extraction and fetotomy for calf 1. The fetuses in animals 3 and 4 died at 348 and 390 days of gestation, respectively. Induction of labor was attempted in both animals, after fetal death, by using a combination of rapid progesterone withdrawal and steroid and prostaglandin F2alpha administration. The calf of animal 4 had to be removed with manual cervical dilation and fetotomy All adult females survived the procedures. These data provide the first in vivo evidence that the CL is the primary source of progesterone throughout pregnancy in the bottlenose dolphin. Until further characterization of hormones required during pregnancy and at parturition has been accomplished, the exogenous progestagen supplementation protocol described here cannot be recommended for treatment of progesterone insufficiency in bottlenose dolphins.

    Topics: Abortion, Veterinary; Animals; Bottle-Nosed Dolphin; Female; Pregnancy; Pregnancy, Animal; Progesterone; Progestins; Stillbirth; Trenbolone Acetate

2012