altholactone has been researched along with Inflammation* in 1 studies
1 other study(ies) available for altholactone and Inflammation
Article | Year |
---|---|
(+)-Altholactone exhibits broad spectrum immune modulating activity by inhibiting the activation of pro-inflammatory cytokines in RAW 264.7 cell lines.
An evaluation of Indonesian plants to identify compounds with immune modulating activity revealed that the methanolic extract of an Alphonsea javanica Scheff specimen possessed selective anti-inflammatory activity in a nuclear factor-kappa B (NF-κB) luciferase and MTT assay using transfected macrophage immune (Raw264.7) cells. A high-throughput LC/MS-ELSD based library approach of the extract in combination with the NF-κB and MTT assays revealed the styryl lactone (+)-altholactone (2) was responsible for the activity. Compound 2, its acetylated derivate (+)-3-O-acetylaltholactone (3), and the major compound of this class, (+)-goniothalmin (1), were further evaluated to determine their anti-inflammatory potential in the NF-κB assay. Concentration-response studies of 1-3 indicated that only 2 possessed NF-κB based anti-inflammatory activity. Compound 2 reduced the LPS-induced NO production, phosphorylation of IκBα, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) using Western blot analysis. Further studies using qPCR indicated 2 reduced the expression of eight pro-inflammatory cytokines/enzymes (0.8-5.0μM) which included: COX-2, iNOS, IP-10, IL-1β, MCP-1, GCS-F, IL-6 and IFN-β. These results indicated that 2 displays broad spectrum immune modulating activity by functioning as an anti-inflammatory agent against LPS-induced NF-κB signaling. Conversely the selective cytotoxicity and in vivo anti-tumor and anti-inflammatory activity previously reported for 1 do not appear to arise from a mechanism that is linked to the NF-κB immune mediated pathway. Topics: Animals; Anti-Inflammatory Agents; Blotting, Western; Cell Line; Cytokines; Furans; Humans; Immunomodulation; Inflammation; Inhibitory Concentration 50; Mice; Models, Molecular; Molecular Structure; Polymerase Chain Reaction; Pyrones; RNA, Messenger | 2013 |