alpha-synuclein has been researched along with Motor-Disorders* in 8 studies
8 other study(ies) available for alpha-synuclein and Motor-Disorders
Article | Year |
---|---|
Helicobacter hepaticus augmentation triggers Dopaminergic degeneration and motor disorders in mice with Parkinson's disease.
Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP. Topics: alpha-Synuclein; Animals; Dopamine; Helicobacter hepaticus; Humans; Inflammation; Mice; Mice, Transgenic; Motor Disorders; Parkinson Disease | 2023 |
Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation.
A growing body of evidence suggests that nuclear alpha-synuclein (αSyn) plays a role in the pathogenesis of Parkinson's disease (PD). However, this question has been difficult to address as controlling the localization of αSyn in experimental systems often requires protein overexpression, which affects its aggregation propensity. To overcome this, we engineered SncaNLS mice, which localize endogenous αSyn to the nucleus. We characterized these mice on a behavioral, histological and biochemical level to determine whether the increase of nuclear αSyn is sufficient to elicit PD-like phenotypes. SncaNLS mice exhibit age-dependent motor deficits and altered gastrointestinal function. We found that these phenotypes were not linked to αSyn aggregation or phosphorylation. Through histological analyses, we observed motor cortex atrophy in the absence of midbrain dopaminergic neurodegeneration. We sampled cortical proteomes of SncaNLS mice and controls to determine the molecular underpinnings of these pathologies. Interestingly, we found several dysregulated proteins involved in dopaminergic signaling, including Darpp32, Pde10a and Gng7, which we further confirmed was decreased in cortical samples of the SncaNLS mice compared with controls. These results suggest that chronic endogenous nuclear αSyn can elicit toxic phenotypes in mice, independent of its aggregation. This model raises key questions related to the mechanism of αSyn toxicity in PD and provides a new model to study an underappreciated aspect of PD pathogenesis. Topics: alpha-Synuclein; Animals; Mice; Motor Disorders; Parkinson Disease; Phosphorylation; Protein Aggregates | 2022 |
4-Phenylbutyrate Mitigates the Motor Impairment and Dopaminergic Neuronal Death During Parkinson's Disease Pathology via Targeting VDAC1 Mediated Mitochondrial Function and Astrocytes Activation.
Parkinson's disease (PD) is a progressive motor neurodegenerative disorder significantly associated with protein aggregation related neurodegenerative mechanisms. In view of no disease modifying drugs, the present study was targeted to investigate the therapeutic effects of pharmacological agent 4-phenylbutyric acid (4PBA) in PD pathology. 4PBA is an FDA approved monocarboxylic acid with inhibitory activity towards histone deacetylase and clinically treats urea cycle disorder. First, we observed the significant protective effects of 4PBA on PD specific neuromuscular coordination, level of tyrosine hydroxylase, α-synuclein level and neurotransmitter dopamine in both substantia nigra and striatal regions of the experimental rat model of PD. Further results revealed that treatment with 4PBA drug exhibited significant protection against disease related oxidative stress and augmented nitrite levels. The disease pathology-related depletion in mitochondrial membrane potential and augmented level of calcium as well as mitochondrion membrane located VDAC1 protein level and cytochrome-c translocation were also significantly attenuated with 4PBA administration. Inhibited neuronal apoptosis and restored neuronal morphology were also observed with 4PBA treatment as measured by level of pro-apoptotic proteins t-Bid, Bax and cleaved caspase-3 along with cresyl violet staining in both substantia nigra and striatal regions. Lastly, PD-linked astrocyte activation was significantly inhibited with 4PBA treatment. Altogether, our findings suggest that 4PBA exerts broad-spectrum neuroprotective effects in PD animal model. Topics: alpha-Synuclein; Animals; Astrocytes; bcl-2-Associated X Protein; Calcium; Caspase 3; Cytochromes; Disease Models, Animal; Dopamine; Dopaminergic Neurons; Histone Deacetylases; Mitochondria; Motor Disorders; Neuroprotective Agents; Nitrites; Parkinson Disease; Phenylbutyrates; Protein Aggregates; Rats; Tyrosine 3-Monooxygenase; Voltage-Dependent Anion Channel 1 | 2022 |
Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans.
Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies.. To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models.. We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model.. We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease. Topics: alpha-Synuclein; Animals; Artificial Intelligence; Caenorhabditis elegans; Disease Models, Animal; Dopamine; Dopaminergic Neurons; Mammals; Motor Disorders; Rats | 2021 |
Chronic Systemic Exposure to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson's Disease.
Epidemiological studies demonstrated that pesticide exposure, such as rotenone and paraquat, increases the risk of Parkinson's disease (PD). Chronic systemic exposure to rotenone, a mitochondrial complex I inhibitor, could reproduce many features of PD. However, the adoption of the models is limiting because of variability in animal sensitivity and the inability of other investigators to consistently reproduce the PD neuropathology. In addition, most of rotenone models were produced in rats. Here, we tried to establish a high-reproducible rotenone model using C57BL/6J mice. The rotenone mouse model was produced by chronic systemic exposure to a low dose of rotenone (2.5 mg/kg/day) for 4 weeks by subcutaneous implantation of rotenone-filled osmotic mini pump. The rotenone-treated mice exhibited motor deficits assessed by open field, rotarod and cylinder test and gastrointestinal dysfunction. Rotenone treatment decreased the number of dopaminergic neuronal cells in the substantia nigra pars compacta (SNpc) and lesioned nerve terminal in the striatum. In addition, we observed significant reduction of cholinergic neurons in the dorsal motor nucleus of the vagus (DMV) and the intestinal myenteric plexus. Moreover, α-synuclein was accumulated in neuronal soma in the SNpc, DMV and intestinal myenteric plexus in rotenone-treated mice. These data suggest that the low-dose rotenone mouse model could reproduce behavioral and central and peripheral neurodegenerative features of PD and be a useful model for investigation of PD pathogenesis. Topics: alpha-Synuclein; Animals; Behavior, Animal; Biomarkers; Cholinergic Neurons; Disease Models, Animal; Dopaminergic Neurons; Electron Transport Complex I; Environmental Exposure; Fluorescent Antibody Technique; Insecticides; Male; Mice; Mitochondria; Motor Disorders; Myenteric Plexus; Nervous System Diseases; Parkinson Disease; Rotenone; Substantia Nigra | 2020 |
Early fine motor impairment and behavioral dysfunction in (Thy-1)-h[A30P] alpha-synuclein mice.
Intraneuronal inclusions of alpha-synuclein are commonly found in the brain of patients with Parkinson's disease and other α-synucleinopathies. The correlation between alpha-synuclein pathology and symptoms has been studied in various animal models. In (Thy-1)-h[A30P] alpha-synuclein transgenic mice, behavioral and motor abnormalities were reported from 12 and 15 months, respectively. The aim of this study was to investigate whether these mice also display symptoms at earlier time points.. We analyzed gait deficits, locomotion, and behavioral profiles in (Thy-1)-h[A30P] alpha-synuclein and control mice at 2, 8, and 11 months of age. In addition, inflammatory markers, levels of alpha-synuclein oligomers, and tyrosine hydroxylase reactivity were studied.. Already at 2 months of age, transgenic mice displayed fine motor impairments in the challenging beam test that progressively increased up to 11 months of age. At 8 months, transgenic mice showed a decreased general activity with increased risk-taking behavior in the multivariate concentric square field test. Neuropathological analyses of 8- and 11-month-old mice revealed accumulation of oligomeric alpha-synuclein in neuronal cell bodies. In addition, a decreased presence of tyrosine hydroxylase suggests a dysregulation of the dopaminergic system in the transgenic mice, which in turn may explain some of the motor impairments observed in this mouse model.. Taken together, our results show that the (Thy-1)-h[A30P] alpha-synuclein transgenic mouse model displays early Parkinson's disease-related symptoms with a concomitant downregulation of the dopaminergic system. Thus, this should be an appropriate model to study early phenotypes of alpha-synucleinopathies. Topics: alpha-Synuclein; Animals; Behavior, Animal; Disease Models, Animal; Female; Male; Mice; Mice, Transgenic; Motor Activity; Motor Disorders; Parkinson Disease | 2018 |
Diabetes mellitus and Parkinson disease.
To investigate whether diabetes mellitus is associated with Parkinson-like pathology in people without Parkinson disease and to evaluate the effect of diabetes mellitus on markers of Parkinson pathology and clinical progression in drug-naive patients with early-stage Parkinson disease.. We compared 25 patients with Parkinson disease and diabetes mellitus to 25 without diabetes mellitus, and 14 patients with diabetes mellitus and no Parkinson disease to 14 healthy controls (people with no diabetes mellitus or Parkinson disease). The clinical diagnosis of diabetes mellitus was confirmed by 2 consecutive fasting measurements of serum glucose levels >126 mL/dL. Over a 36-month follow-up period, we then investigated in the population with Parkinson disease whether the presence of diabetes mellitus was associated with faster motor progression or cognitive decline.. The presence of diabetes mellitus was associated with higher motor scores (. Diabetes mellitus may predispose toward a Parkinson-like pathology, and when present in patients with Parkinson disease, can induce a more aggressive phenotype. Topics: Adult; Aged; alpha-Synuclein; Blood Glucose; Cognition Disorders; Cross-Sectional Studies; Diabetes Complications; Diabetes Mellitus; Disease Progression; Dopamine Plasma Membrane Transport Proteins; Female; Humans; Longitudinal Studies; Male; Middle Aged; Motor Disorders; Parkinson Disease; tau Proteins; Tomography, Emission-Computed, Single-Photon; Tropanes | 2018 |
Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.
In most patients, Parkinson's disease is thought to emerge after a lifetime of exposure to, and interaction between, various genetic and environmental risk factors. One of the key genetic factors linked to this condition is α-synuclein, and the α-synuclein protein is pathologically associated with idiopathic cases. However, α-synuclein pathology is also present in presymptomatic, clinically "normal" individuals suggesting that environmental factors, such as Parkinson's disease-linked agricultural pesticides, may be required to precipitate Parkinson's disease in these individuals. In this context, the aim of this study was to assess the behavioural and neuropathological impact of exposing rats with a subclinical load of α-synuclein to subclinical doses of the organic pesticide, rotenone. Rats were randomly assigned to two groups for intra-nigral infusion of AAV Topics: alpha-Synuclein; Animals; Disease Models, Animal; Functional Laterality; Green Fluorescent Proteins; Insecticides; Male; Motor Disorders; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Rotenone; Substantia Nigra; Time Factors; Transduction, Genetic; Tyrosine 3-Monooxygenase; Vibrissae | 2017 |