alpha-synuclein has been researched along with Melanoma* in 13 studies
3 review(s) available for alpha-synuclein and Melanoma
Article | Year |
---|---|
Linking Parkinson's Disease and Melanoma: Interplay Between α-Synuclein and Pmel17 Amyloid Formation.
Parkinson's disease (PD) is a neurodegenerative disorder associated with the death of dopaminergic neurons within the substantia nigra of the brain. Melanoma is a cancer of melanocytes, pigmented cells that give rise to skin tone, hair, and eye color. Although these two diseases fundamentally differ, with PD leading to cell degeneration and melanoma leading to cell proliferation, epidemiological evidence has revealed a reciprocal relationship where patients with PD are more susceptible to melanoma and patients with melanoma are more susceptible to PD. The hallmark pathology observed in PD brains is intracellular inclusions, of which the primary component is proteinaceous α-synuclein (α-syn) amyloid fibrils. α-Syn also has been detected in cultured melanoma cells and tissues derived from patients with melanoma, where an inverse correlation exists between α-syn expression and pigmentation. Although this has led to the prevailing hypothesis that α-syn inhibits enzymes involved in melanin biosynthesis, we recently reported an alternative hypothesis in which α-syn interacts with and modulates the aggregation of Pmel17, a functional amyloid that serves as a scaffold for melanin biosynthesis. In this perspective, we review the literature describing the epidemiological and molecular connections between PD and melanoma, presenting both the prevailing hypothesis and our amyloid-centric hypothesis. We offer our views of the essential questions that remain unanswered to motivate future investigations. Understanding the behavior of α-syn in melanoma could not only provide novel approaches for treating melanoma but also could reveal insights into the role of α-syn in PD. © 2021 International Parkinson and Movement Disorder Society. Topics: alpha-Synuclein; Amyloid; Humans; Melanoma; Parkinson Disease; Substantia Nigra | 2021 |
High lithium levels in tobacco may account for reduced incidences of both Parkinson's disease and melanoma in smokers through enhanced β-catenin-mediated activity.
Parkinson's disease (PD) patients have higher rates of melanoma and vice versa, observations suggesting that the two conditions may share common pathogenic pathways. β-Catenin is a transcriptional cofactor that, when concentrated in the nucleus, upregulates the expression of canonical Wnt target genes, such as Nurr1, many of which are important for neuronal survival. β-Catenin-mediated activity is decreased in sporadic PD as well as in leucine-rich repeat kinase 2 (LRRK2) and β-glucosidase (GBA) mutation cellular models of PD, which is the most common genetic cause of and risk for PD, respectively. In addition, β-catenin expression is significantly decreased in more aggressive and metastatic melanoma. Multiple observational studies have shown smokers to have significantly lower rates of PD as well as melanoma implying that tobacco may contain one or more elements that protect against both conditions. In support, smoker's brains have significantly reduced levels of α-synuclein, a pathological intracellular protein found in PD brain and melanoma cells. Tobacco contains very high lithium levels compared to other plants. Lithium has a broad array of neuroprotective actions, including enhancing autophagy and reducing intracellular α-synuclein levels, and is effective in both neurotoxin and transgenic preclinical PD models. One of lithium's neuroprotective actions is enhancement of β-catenin-mediated activity leading to increased Nurr1 expression through its ability to inhibit glycogen synthase kinase-3 β (GSK-3β). Lithium also has anti-proliferative effects on melanoma cells and the clinical use of lithium is associated with a reduced incidence of melanoma as well as reduced melanoma-associated mortality. This is the first known report hypothesizing that inhaled lithium from smoking may account for the associated reduced rates of both PD and melanoma and that this protection may be mediated, in part, through lithium-induced GSK-3β inhibition and consequent enhanced β-catenin-mediated activity. This hypothesis could be directly tested in clinical trials assessing lithium therapy's ability to affect β-catenin-mediated activity and slow disease progression in patients with PD or melanoma. Topics: alpha-Synuclein; Alzheimer Disease; Autophagy; beta Catenin; beta-Glucosidase; Brain Chemistry; Drug Evaluation, Preclinical; Glycogen Synthase Kinase 3 beta; Humans; Incidence; Leucine-Rich Repeat Serine-Threonine Protein Kinase-2; Lithium; Lithium Carbonate; Melanoma; Models, Biological; Mutation; Neuroprotective Agents; Nicotiana; Nuclear Receptor Subfamily 4, Group A, Member 2; Parkinson Disease; Parkinsonian Disorders; Smokers; Water; Wnt Signaling Pathway | 2019 |
Cutaneous malignant melanoma and Parkinson disease: Common pathways?
The mechanisms underlying the high prevalence of cutaneous malignant melanoma (CMM) in Parkinson disease (PD) are unclear, but plausibly involve common pathways. 129Ser-phosphorylated α-synuclein, a pathological PD hallmark, is abundantly expressed in CMM, but not in normal skin. In inherited PD, PARK genes harbor germline mutations; the same genes are somatically mutated in CMM, or their encoded proteins are involved in melanomagenesis. Conversely, genes associated with CMM affect PD risk. PD/CMM-targeted cells share neural crest origin and melanogenesis capability. Pigmentation gene variants may underlie their susceptibility. We review putative genetic intersections that may be suggestive of shared pathways in neurodegeneration/melanomagenesis. Ann Neurol 2016;80:811-820. Topics: alpha-Synuclein; Cyclin-Dependent Kinase Inhibitor p16; Cyclin-Dependent Kinase Inhibitor p18; Genetic Predisposition to Disease; Genotype; Humans; Melanoma; Melanoma, Cutaneous Malignant; Parkinson Disease; Parkinson Disease Associated Proteins; Polymorphism, Single Nucleotide; Receptor, Melanocortin, Type 1; Receptors, N-Methyl-D-Aspartate; Skin Neoplasms | 2016 |
10 other study(ies) available for alpha-synuclein and Melanoma
Article | Year |
---|---|
Knocking out alpha-synuclein in melanoma cells downregulates L1CAM and decreases motility.
The Parkinson's disease (PD) associated protein, alpha-synuclein (α-syn/SNCA), is highly expressed in aggressive melanomas. The goal of this study was to reveal possible mechanism(s) of α-syn involvement in melanoma pathogenesis. Herein, we asked whether α-syn modulates the expression of the pro-oncogenic adhesion molecules L1CAM and N-cadherin. We used two human melanoma cell lines (SK-MEL-28, SK-MEL-29), SNCA-knockout (KO) clones, and two human SH-SY5Y neuroblastoma cell lines. In the melanoma lines, loss of α-syn expression resulted in significant decreases in the expression of L1CAM and N-cadherin and concomitant significant decreases in motility. On average, there was a 75% reduction in motility in the four SNCA-KOs tested compared to control cells. Strikingly, comparing neuroblastoma SH-SY5Y cells that have no detectable α-syn to SH-SY5Y cells that stably express α-syn (SH/+αS), we found that expressing α-syn increased L1CAM and single-cell motility by 54% and 597%, respectively. The reduction in L1CAM level in SNCA-KO clones was not due to a transcriptional effect, rather we found that L1CAM is more efficiently degraded in the lysosome in SNCA-KO clones than in control cells. We propose that α-syn is pro-survival to melanoma (and possibly neuroblastoma) because it promotes the intracellular trafficking of L1CAM to the plasma membrane. Topics: alpha-Synuclein; Cadherins; Humans; Melanoma; Neural Cell Adhesion Molecule L1; Neuroblastoma | 2023 |
Distinct molecular mechanisms contribute to the reduction of melanoma growth and tumor pain after systemic and local depletion of alpha-Synuclein in mice.
Epidemiological studies show a coincidence between Parkinson's disease (PD) and malignant melanoma. It has been suggested that this relationship is due, at least in part, to modulation of alpha-Synuclein (αSyn/Snca). αSyn oligomers accumulate in PD, which triggers typical PD symptoms, and in malignant melanoma, which increases the proliferation of tumor cells. In addition, αSyn contributes to non-motor symptoms of PD, including pain. In this study, we investigated the role of αSyn in melanoma growth and melanoma-induced pain in a mouse model using systemic and local depletion of αSyn. B16BL6 wild-type as well as αSyn knock-down melanoma cells were inoculated into the paws of αSyn knock-out mice and wild-type mice, respectively. Tumor growth and tumor-induced pain hypersensitivity were assessed over a period of 21 days. Molecular mechanisms were analyzed by RT-PCR and Western Blot in tumors, spinal cord, and sciatic nerve. Our results indicate that both global and local ablation of Snca contribute to reduced tumor growth and to a reduction of tumor-induced mechanical allodynia, though mechanisms contributing to these effects differ. While injection of wild-type cells in Snca knock-out mice strongly increased the immune response in the tumor, local Snca knock-down decreased autophagy mechanisms and the inflammatory reaction in the tumor. In conclusion, a knockdown of αSyn might constitute a promising approach to inhibiting the progression of melanoma and reducing tumor-induced pain. Topics: alpha-Synuclein; Animals; Cancer Pain; Melanoma; Melanoma, Cutaneous Malignant; Mice; Mice, Knockout; Parkinson Disease | 2023 |
Knocking out alpha-synuclein in melanoma cells dysregulates cellular iron metabolism and suppresses tumor growth.
The protein alpha-synuclein (α-syn) is unusual because, depending on its conformation and the type of cell in which it is expressed, it is pro-death or pro-survival, triggering neurodegeneration in Parkinson's disease and enhancing cell survival of some melanomas. To probe the function of α-syn in melanoma, we used CRISPR/Cas9 to knockout SNCA, the gene that codes for α-syn, in SK-Mel-28 melanoma cells. The SNCA-knockout clones in culture exhibited a decrease in the transferrin receptor 1 (TfR1), an increase in ferritin, an increase of reactive oxygen species and proliferated slower than control cells. These SNCA-knockout clones grafted into SCID mice grew significantly slower than the SK-Mel-28 control cells that expressed α-syn. In the excised SNCA-knockout xenografts, TfR1 decreased 3.3-fold, ferritin increased 6.2-fold, the divalent metal ion transporter 1 (DMT1) increased threefold, and the iron exporter ferroportin (FPN1) decreased twofold relative to control xenografts. The excised SNCA-KO tumors exhibited significantly more ferric iron and TUNEL staining relative to the control melanoma xenografts. Collectively, depletion of α-syn in SK-Mel-28 cells dysregulates cellular iron metabolism, especially in xenografts, yielding melanoma cells that are deficient in TfR1 and FPN1, that accumulate ferric iron and ferritin, and that undergo apoptosis relative to control cells expressing α-syn. Topics: alpha-Synuclein; Animals; Antigens, CD; Cation Transport Proteins; Cell Proliferation; Cell Survival; CRISPR-Cas Systems; Ferritins; Gene Expression Regulation, Neoplastic; Gene Knockout Techniques; Heterografts; Humans; Iron; Melanoma; Mice; Receptors, Transferrin | 2021 |
Defining an amyloid link Between Parkinson's disease and melanoma.
An epidemiological connection exists between Parkinson's disease (PD) and melanoma. α-Synuclein (α-syn), the hallmark pathological amyloid observed in PD, is also elevated in melanoma, where its expression is inversely correlated with melanin content. We present a hypothesis that there is an amyloid link between α-syn and Pmel17 (premelanosomal protein), a functional amyloid that promotes melanogenesis. Using SK-MEL 28 human melanoma cells, we show that endogenous α-syn is present in melanosomes, the organelle where melanin polymerization occurs. Using in vitro cross-seeding experiments, we show that α-syn fibrils stimulate the aggregation of a Pmel17 fragment constituting the repeat domain (RPT), an amyloidogenic domain essential for fibril formation in melanosomes. The cross-seeded fibrils exhibited α-syn-like ultrastructural features that could be faithfully propagated over multiple generations. This cross-seeding was unidirectional, as RPT fibrils did not influence α-syn aggregation. These results support our hypothesis that α-syn, a pathogenic amyloid, modulates Pmel17 aggregation in the melanosome, defining a molecular link between PD and melanoma. Topics: alpha-Synuclein; Cell Line, Tumor; gp100 Melanoma Antigen; Humans; Melanoma; Melanosomes; Parkinson Disease; Protein Aggregates; Protein Domains | 2020 |
Treatment with diphenyl-pyrazole compound anle138b/c reveals that α-synuclein protects melanoma cells from autophagic cell death.
Recent epidemiological and clinical studies have reported a significantly increased risk for melanoma in people with Parkinson's disease. Because no evidence could be obtained that genetic factors are the reason for the association between these two diseases, we hypothesized that of the three major Parkinson's disease-related proteins-α-synuclein, LRRK2, and Parkin-α-synuclein might be a major link. Our data, presented here, demonstrate that α-synuclein promotes the survival of primary and metastatic melanoma cells, which is the exact opposite of the effect that α-synuclein has on dopaminergic neurons, where its accumulation causes neuronal dysfunction and death. Because this detrimental effect of α-synuclein on neurons can be rescued by the small molecule anle138b, we explored its effect on melanoma cells. We found that treatment with anle138b leads to massive melanoma cell death due to a major dysregulation of autophagy, suggesting that α-synuclein is highly beneficial to advanced melanoma because it ensures that autophagy is maintained at a homeostatic level that promotes and ensures the cell's survival. Topics: alpha-Synuclein; Animals; Autophagy; Benzodioxoles; Biphenyl Compounds; Cell Death; Cell Line, Tumor; Dopaminergic Neurons; Female; Humans; Leucine-Rich Repeat Serine-Threonine Protein Kinase-2; Melanoma; Mice; Mice, Nude; Parkinson Disease; Pyrazoles; Ubiquitin-Protein Ligases | 2017 |
Analysis of alpha-synuclein in malignant melanoma - development of a SRM quantification assay.
Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM) assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light) versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis. Topics: Adult; Aged; Aged, 80 and over; alpha-Synuclein; Biomarkers, Tumor; Female; Gene Expression Regulation, Neoplastic; Humans; Male; Melanoma; Middle Aged; Neoplasm Metastasis; Organ Specificity; Prognosis; Proteomics; RNA, Messenger | 2014 |
Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.
Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease. Topics: alpha-Synuclein; Cell Death; Cell Line, Tumor; Cell Survival; Glycine; Glyphosate; Humans; Insecticides; Maneb; Melanoma; Neuroblastoma; Paraquat; Parkinson Disease; Rotenone; Transduction, Genetic | 2013 |
Role of Ser129 phosphorylation of α-synuclein in melanoma cells.
α-Synuclein, a protein central to Parkinson's disease, is frequently expressed in melanoma tissues, but not in non-melanocytic cutaneous carcinoma and normal skin. Thus, α-synuclein is not only related to Parkinson's disease, but also to melanoma. Recently, epidemiologists reported co-occurrence of melanoma and Parkinson's disease in patients, suggesting that these diseases could share common pathogenetic components and that α-synuclein might be one of these. In Parkinson's disease, phosphorylation of α-synuclein at Ser129 plays an important role in the pathobiology. However, its role in melanoma is not known. Here, we show the biological relevance of Ser129 phosphorylation in human melanoma cells. First, we have identified an antibody that reacts with Ser129-unphosphorylated α-synuclein but not with Ser129-phosphorylated α-synuclein. Using this and other antibodies to α-synuclein, we investigated the role of Ser129 phosphorylation in human melanoma SK-MEL28 and SK-MEL5 cells. Our immunofluorescence microscopy showed that the Ser129-phosphorylated form, but not the Ser129-unphosphorylated form, of α-synuclein localizes to dot-like structures at the cell surface and the extracellular space. Furthermore, immuno-electron microscopy showed that the melanoma cells release microvesicles in which Ser129-phosphorylated α-synuclein localizes to the vesicular membrane. Taken together, our studies suggest that the phosphorylation of Ser129 leads to the cell surface translocation of α-synuclein along the microtubule network and its subsequent vesicular release in melanoma cells. Topics: alpha-Synuclein; Amino Acid Sequence; Antibodies, Monoclonal; Cell Line, Tumor; Epitope Mapping; Humans; Melanoma; Molecular Sequence Data; Phosphorylation; Serine; Skin Neoplasms | 2013 |
The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.
The relatively high co-occurrence of Parkinson's disease (PD) and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR)-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM), the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn) that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR) and inhibit tyrosine hydroxylase (TH), both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA), led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB) light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in melanoma cells and in dopaminergic neuronal cells. Topics: alpha-Synuclein; Cell Line, Tumor; Cell Survival; Dopamine; Dopaminergic Neurons; Gene Expression; Humans; Melanins; Melanoma; Monophenol Monooxygenase; Organ Specificity; Parkinson Disease; Signal Transduction; Skin Neoplasms; Tyrosine 3-Monooxygenase; Ultraviolet Rays | 2012 |
Parkinson's disease-related protein, alpha-synuclein, in malignant melanoma.
Melanoma is the major cause of skin cancer death worldwide. Parkinson's disease is a neurodegenerative disorder that is caused by mutation of alpha-synuclein or other genes. Importantly, epidemiological studies have reported co-occurrence of melanoma and Parkinson's disease, suggesting that these two diseases could share common genetic components.. Recently, we found that human melanoma cell lines highly express alpha-synuclein, whereas the protein is undetectable in the non-melanoma cancer cell lines tested. To investigate the expression of alpha-synuclein in human melanoma tissues, we immunostained sections of melanoma, nevus, non-melanocytic cutaneous carcinoma, and normal skin. alpha-Synuclein was positively detected in 86% of the primary and 85% of the metastatic melanoma sections, as well as in 89% of nevus sections. However, alpha-synuclein was undetectable in non-melanocytic cutaneous carcinoma and normal skin.. The Parkinson's disease-related protein, alpha-synuclein, is expressed in both malignant and benign melanocytic lesions, such as melanomas and nevi. Although alpha-synuclein cannot be used to distinguish between malignant and benign melanocytic skin lesions, it might be a useful biomarker for the diagnosis of metastatic melanoma. Topics: Adult; Aged; alpha-Synuclein; Antigens, Neoplasm; Biomarkers, Tumor; Brain Neoplasms; Cell Line, Tumor; Female; Humans; Male; MART-1 Antigen; Melanins; Melanoma; Middle Aged; Neoplasm Proteins; Nevus; Parkinson Disease; Pigmentation; Retinoblastoma; Skin Neoplasms | 2010 |