alpha-chymotrypsin has been researched along with Gaucher-Disease* in 2 studies
2 other study(ies) available for alpha-chymotrypsin and Gaucher-Disease
Article | Year |
---|---|
Complete amino-acid sequence and carbohydrate content of the naturally occurring glucosylceramide activator protein (A1 activator) absent from a new human Gaucher disease variant.
Two naturally occurring non-enzymic glucosylceramide activator proteins (A1a and A1b activator) shown previously to be immunochemically not detectable in a new variant of human Gaucher disease (glucosylceramide lipidosis) without glucosylceramidase deficiency, were characterized by amino-acid sequence and carbohydrate content. The complete amino-acid sequence of the A1a activator was determined. The protein consists of 80 amino-acid residues including three disulfide bridges lacking arginine and tryptophan. The molecular mass is 8.95 kDa. About 20% of the polypeptide chain are shorter by two amino-acid residues at the N-terminal end. The A1b activator was characterized by the amino-acid compositions of all tryptic peptides and of the entire protein; sequencing was performed of the regions 1-34 and 42-56. Identical results were obtained for the polypeptide chains of both A1 activators. This suggests that they do not differ in their primary structures which is in agreement with the immunochemical results. The difference between A1a and A1b activator is due to the carbohydrate part. The total amount of 49% carbohydrate in A1a and 76.7% in A1b consists mainly of hexoses. Both chains contain two moles of N-acetylglucosamine per mole protein bound to asparagine in position 22. A comparison of the primary structure of the A1 activator with the sulfatide activator sequence revealed an interesting similarity, especially of the cysteine residues and the carbohydrate-binding asparagine. Sequence homology was also found between a part of the A1 activator sequence and the hemagglutinin neuraminidase of influenza virus as well as to a hypothetical glycoprotein of the Epstein-Barr virus. The comparison with human lysosomal glucosylcerebrosidase showed no sequence similarity. Topics: Amino Acid Sequence; Carbohydrates; Chymotrypsin; Female; Gaucher Disease; Glycoproteins; Humans; Hydrolysis; Middle Aged; Molecular Sequence Data; Oxidation-Reduction; Saposins; Sulfhydryl Compounds; Trypsin | 1987 |
A kinetic study of the effects of galactocerebroside 3-sulphate on human spleen glucocerebrosidase. Evidence for two activator-binding sites.
Extraction of control human spleen glucocerebrosidase with sodium cholate and butan-l-ol reversibly inactivates the enzyme in terms of its ability to hydrolyse the water-soluble substrate 4-methylumbelliferyl beta-D-glucopyranoside (MUGlc). The acidic brain lipid galactocerebroside 3-sulphate (sulphatide) reconstitutes beta-glucosidase activity in a strongly concentration-dependent manner. In this study we show that sulphatide exhibits three critical micellar concentrations (CMCs): CMC1, 3.72 microM; CMC2, 22.6 microM; CMC3, 60.7 microM. We designate the aggregates formed at these CMCs as primary, secondary and tertiary micelles respectively. From the results of kinetic studies performed at various sulphatide concentrations (0.012-248 microM), we found that sulphatide monomers (less than 3 microM) decreased the Km (for MUGlc) of control glucocerebrosidase from 11 to 4.6 mM, and lowered the Vmax. 2-fold. However, secondary and tertiary micelles were required for expression of high control glucocerebrosidase activities. Glucocerebrosidase prepared from the spleen of a patient with non-neuronopathic type 1 Gaucher's disease exhibited a very low Km (2.8 mM) even in the absence of exogenous lipid, and sulphatide monomers had no effect on the mutant enzyme's Km or Vmax. However, secondary or tertiary micelles markedly increased the Vmax. of the type 1 glucocerebrosidase to 60% of the corresponding control enzyme value. In contrast, for the glucocerebrosidase of the neuronopathic type 2 case, although sulphatide decreased the Km from 9.2 to 1.7 mM, the Vmax. never reached more than 5% that of the control enzyme, even at high concentrations of sulphatide. In addition, we found that secondary and tertiary sulphatide micelles enhanced the rate of inactivation of all three glucocerebrosidase preparations by chymotrypsin. Collectively, these results indicate the presence of two sulphatide-binding sites on glucocerebrosidase: one that enhances substrate binding, and another that enhances catalysis. Topics: Binding Sites; Cerebrosides; Chymotrypsin; Enzyme Activation; Galactosylceramides; Gaucher Disease; Glucosidases; Glucosylceramidase; Glycoproteins; Humans; Kinetics; Micelles; Proteins; Saposins; Spleen; Sulfoglycosphingolipids | 1986 |