alpha-chymotrypsin has been researched along with Death--Sudden--Cardiac* in 1 studies
1 other study(ies) available for alpha-chymotrypsin and Death--Sudden--Cardiac
Article | Year |
---|---|
Proteasome inhibition 1 h following ischemia protects GRK2 and prevents malignant ventricular tachyarrhythmias and SCD in a model of myocardial infarction.
Arrhythmia-prone epicardial border zone (EBZ) tissues demonstrate decreased G protein-coupled receptor kinase-2 (GRK2) activity and increased sensitivity to isoproterenol 6-24 h after coronary artery ligation in the dog. We previously demonstrated that the ischemia-mediated decrease in GRK2 in cardiac ischemic tissue was largely blocked by proteasome blockade initiated 1 h before the onset of ischemia, and this was associated with significant cardioprotection against malignant ventricular tachyarrhythmias. For application to clinical circumstances, it is desirable to determine whether a clinical window exists following the onset of ischemia for such a protective effect. The treatment of six dogs with the selective proteasome inhibitor bortezomib 1 h after the surgical induction of left coronary artery ischemia provided 80% (EBZ) and 42% (infarct) protection (by immunoblot) against the loss of GRK2 at 24 h. There was no significant increase of heat shock protein 70(72) in the EBZ of bortezomib-treated animals compared with control. There was a striking absence of rapid (>300 beats/min) and very rapid (>360 beats/min) ventricular triplets that is highly predictive of sudden cardiac deaths (SCDs) during electrocardiogram monitoring of the first 24 h in the bortezomib-treated animals in contrast with nontreated infarcted animals. There were no SCDs in the 6 treated animals (0%) and five SCDs in the 14 control animals (36%). Assay of whole blood proteasome activity demonstrated the expected decrease over the 24-h observation period. These data support the concept that proteasome inhibition within a window of time following myocardial infarction may be of use in suppressing malignant tachyarrhythmias and SCD. Topics: Animals; Blotting, Western; Boronic Acids; Bortezomib; Catecholamines; Chymotrypsin; Coronary Vessels; Death, Sudden, Cardiac; Dogs; Electrocardiography; Electrophysiology; G-Protein-Coupled Receptor Kinase 3; Heart Ventricles; HSP72 Heat-Shock Proteins; Ligation; Male; Myocardial Infarction; Myocardial Ischemia; Protease Inhibitors; Proteasome Inhibitors; Pyrazines; Tachycardia; Trypsin | 2008 |