alpha-carotene has been researched along with Diabetic-Retinopathy* in 2 studies
2 other study(ies) available for alpha-carotene and Diabetic-Retinopathy
Article | Year |
---|---|
Certain Dietary Nutrients Reduce the Risk of Eye Affliction/Retinopathy in Individuals with Diabetes: National Health and Nutrition Examination Survey, 2003-2018.
As the global trend of diabetes intensifies, the burden of vision-threatening retinopathy, particularly diabetic retinopathy (DR), is increasing. There is an urgent need to seek strategies for early prevention and control of DR. This study attempted to comprehensively evaluate the relationship between dietary nutrient intake and the risk of DR to provide assistance for doctors in guiding the diet of diabetic patients. Data from eligible participants with diabetes from the US National Health and Nutrition Examination Survey (NHANES) from 2003-2018 were analyzed. Univariate logistic regression was used to assess the association between 58 dietary nutrient intakes and self-reported eye disease risk. Multivariate logistic regression model was used to further evaluate the relationship between the two groups after adjusting relevant confounding factors. A total of 4595 diabetic patients were included. People with self-reported eye affliction/retinopathy had lower dietary fiber, butanoic, octanoic, vitamin A, alpha-carotene, folate, magnesium, copper and caffeine intake compared to those without self-reported eye affliction/retinopathy. The pooled ORs (95% CIs) were 0.78 (0.62-0.98), 0.79 (0.63-0.99), 0.72 (0.58-0.91), 0.74 (0.59-0.93), 0.70 (0.55-0.88), 075 (0.60-0.95), 0.79 (0.64-0.99), 0.67 (0.54-0.84) and 0.80 (0.64-0.99). Dietary cholesterol and hexadecenoic intake were higher, with the pooled ORs (95% CIs) of 1.26 (1.01-1.58) and 1.27 (1.02-1.59), respectively. Our research found that among dietary nutrients, dietary fiber, butanoic, octanoic, vitamin A, alpha-carotene, folate, magnesium, copper and caffeine intake reduced the occurrence of DR. Cholesterol and hexadecenoic intake promoted the occurrence of DR. This suggests that certain dietary nutrients should be paid more attention in the prevention of DR. Topics: Caffeine; Carotenoids; Cholesterol, Dietary; Copper; Diabetes Mellitus; Diabetic Retinopathy; Diet; Dietary Fiber; Electrolytes; Folic Acid; Humans; Magnesium; Nutrients; Nutrition Surveys; Vitamin A | 2022 |
Plasma carotenoids and diabetic retinopathy.
Diabetic retinopathy increases with duration of diabetes and may be associated with carotenoid status. Carotenoids alter the pro-oxidation/antioxidation balance, and circulating levels depend largely on dietary intake. Lower levels have been reported in diabetes and age-related macular degeneration; however, little is known of the relationship between carotenoids and diabetic complications. Consequently, the purpose of the present study was to evaluate the relationship between plasma carotenoids and diabetic retinopathy. We assessed the carotenoid-retinopathy relationship in 111 individuals with type 2 diabetes in a community-based, cross-sectional study. We photodocumented retinal status and used HPLC to measure plasma carotenoid concentrations. Data for clinical and demographic variables and risk factors for diabetic retinopathy were obtained from 24 h urine and fasting blood samples, and an interviewer-assisted lifestyle questionnaire. We found that the combined lycopene and lutein/zeaxanthin (non-pro-vitamin A (non-PVA) carotenoid) concentration when compared with the pro-vitamin A (PVA) carotenoids (alpha-carotene, beta-carotene and beta-cryptoxanthin) was significantly lower in the retinopathy than non-retinopathy group (OR 1.2 (95% CI 1.0, 1.4) v. 1.6 (95% CI 1.4, 1.7), respectively; P=0.009). A higher non-PVA:PVA ratio also predicted a lower risk of diabetic retinopathy, after adjustment for potential confounders (OR 0.33 (95% CI 0.12, 0.95); P=0.039). Finally, a higher concentration of PVA carotenoids was associated with greater odds of diabetic retinopathy, after adjustment for risk factors (P=0.049). We suggest synergies between carotenoids are implicated in diabetic retinopathy, independent of established risk factors. Importantly, our observations indicate dietary modulation of retinopathy risk may be possible by increasing intakes of lutein- and lycopene-rich foods. Topics: Adult; Aged; Antioxidants; beta Carotene; Biomarkers; Blood Glucose; Carotenoids; Chi-Square Distribution; Cross-Sectional Studies; Cryptoxanthins; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Female; Humans; Lutein; Lycopene; Male; Middle Aged; Risk; Xanthophylls; Zeaxanthins | 2009 |