alpha-asarone and Stroke

alpha-asarone has been researched along with Stroke* in 2 studies

Other Studies

2 other study(ies) available for alpha-asarone and Stroke

ArticleYear
Neuroprotective Effect of Alpha-asarone on the Rats Model of Cerebral Ischemia-Reperfusion Stroke via Ameliorating Glial Activation and Autophagy.
    Neuroscience, 2021, 10-01, Volume: 473

    Alpha-asarone, a major active component isolated from Acorus gramineus, can affect brain functions and behaviors by multiple mechanisms. However, the effect of alpha-asarone on cerebral ischemia-reperfusion (CIR) stroke has not been reported. The present study aimed to investigate the neuroprotective effect of alpha-asarone and the involved mechanisms against CIR stroke. Rats were subjected to middle cerebral occlusion (MCAO) for 2 h. Then the drug or drug-free vehicle was intravenously injected to corresponding groups. After reperfusion for 24 h, the infarct volume was evaluated by Triphenyl Tetrazolium Chloride (TTC) staining. The neurofunctional recovery and post-stroke epilepsy were evaluated. Nissl and Hematoxylin-Eosin (H&E) staining were used for histological observation. We investigated the protective mechanism of alpha-asarone against the stroke. The results showed that alpha-asarone exhibited a desirable neuroprotective effect, manifested as reducing infarct volume and post-stroke epilepsy and improving neurological function. Histological and flow cytometry analysis revealed that alpha-asarone treatment alleviated cell injury and apoptosis in vivo and in vitro. Furthermore, alpha-asarone decreased GFAP, Iba-1, and LC3II/LC3I expression and increased the expression of p62. These results suggested that alpha-asarone attenuated the CIR stroke injury via ameliorating glial activation and autophagy.

    Topics: Allylbenzene Derivatives; Animals; Anisoles; Apoptosis; Autophagy; Brain Ischemia; Infarction, Middle Cerebral Artery; Neuroprotective Agents; Rats; Reperfusion; Reperfusion Injury; Stroke

2021
Positive effects of α-asarone on transplanted neural progenitor cells in a murine model of ischemic stroke.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2018, Dec-01, Volume: 51

    Some traditional Oriental herbal medicines, such as Acorus tatarinowii and Acorus gramineus, produce beneficial effects for cognition enhancement. An active compound in rhizomes and the bark of these plants is α-asarone.. This study investigated the effects of α-asarone on the proliferation and differentiation of neural progenitor cells (NPCs) in a primary culture and a murine model of ischemic stroke.. NPCs were isolated from mouse fetal cerebral cortices on embryonic day 15, and all experiments were performed using passage 3 NPCs. We utilized a cell counting kit-8 assay, flow cytometry, western blot, and immunohistochemical analysis to assess proliferation and differentiation of NPCs and employed α-asarone in NPC transplanted ischemic stroke mice to evaluate stroke-related functional recovery using behavioral and immunohistochemical analysis.. Treatment with 1 µM, 3 µM, or 10 μM α-asarone induced significant NPC proliferation compared to vehicle treatment. Induced NPCs expressed the neuronal marker neuronal nuclei (NeuN) or the astrocyte marker S100 calcium-binding protein B (S100β). Both immunohistochemistry and flow cytometry revealed that treatment with α-asarone increased the number of NeuN-immunoreactive cells and decreased the number of S100β-immunoreactive cells. Treatment with α-asarone also increased the expression of β-catenin, cyclin D1, and phosphorylated extracellular signal-regulated kinase (ERK) compared to vehicle treatment. In a murine model of ischemic stroke, treatment with α-asarone and transplanted NPCs alleviated stroke-related functional impairments. The corner and rotarod test results revealed that treatment with α-asarone in the NPC transplanted group had greater-than-additive effects on sensorimotor function and motor balance. Moreover, α-asarone treatment promoted the differentiation of transplanted NPCs into NeuN-, glial fibrillary acidic protein (GFAP)-, platelet-derived growth factor-α (PDGFR-α)-, and 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-immunoreactive cells.. α-asarone may promote NPC proliferation and differentiation into neuron-lineage cells by activating β-catenin, cyclin D1, and ERK. Moreover, α-asarone treatment facilitated neurofunctional recovery after NPC transplantation in a murine model of ischemic stroke. Therefore, α-asarone is a potential adjunct treatment to NPC therapy for functional restoration after brain injuries such as ischemic stroke.

    Topics: Acorus; Allylbenzene Derivatives; Animals; Anisoles; Astrocytes; beta Catenin; Brain Ischemia; Cell Differentiation; Cyclin D1; Disease Models, Animal; Extracellular Signal-Regulated MAP Kinases; Female; Mice; Mice, Inbred C57BL; Neural Stem Cells; Neurons; Stroke

2018