alpha-asarone has been researched along with Inflammation* in 2 studies
2 other study(ies) available for alpha-asarone and Inflammation
Article | Year |
---|---|
Anti-inflammatory and central and peripheral anti-nociceptive activities of α-asarone through the inhibition of TNF-α production, leukocyte recruitment and iNOS expression, and participation of the adenosinergic and opioidergic systems.
Alpha-asarone has been found to possess many pharmacological activities, which can improve cognitive function and exert anti-oxidant, anxiolytic, anti-epileptic and protective effects against endothelial cell injury. The anti-inflammatory activity of α-asarone was evaluated using lipopolysaccharide (LPS)-induced paw oedema. Moreover, leukocyte migration, inducible nitric oxide synthase (iNOS) expression and tumour necrosis factor-alpha (TNF-α) levels were quantified in footpads. Formalin and LPS-induced thermal hyperalgesia models were generated using adenosinergic, opioidergic, serotonergic and muscarinic receptor antagonists. The effects on motor coordination were evaluated by means of the rota-rod test. Oral treatment (p.o.) with α-asarone (3 mg/kg) significantly inhibited paw oedema by 62.12 and 72.22%, 2 and 4 h post LPS injection, respectively. Alpha-asarone (3 mg/kg, p.o.) attenuated the inflammatory infiltrate 1, 3 and 6 h after LPS injection. Furthermore, α-asarone (3 mg/kg, p.o.) suppressed iNOS expression and TNF-α production, 6 and 1 h after inflammatory stimulus, respectively. Alpha-asarone (3, 10 and 30 mg/kg, p.o.) inhibited both phases of formalin-induced licking. In the hot-plate test, α-asarone (10 and 30 mg/kg, p.o.) increased the latency to response 3 and 5 h post LPS stimulus. Caffeine and naloxone abolished the central anti-nociceptive effect of α-asarone (neurogenic phase of formalin and hot plate tests), suggesting the participation of the adenosinergic and opioidergic systems. Furthermore, naloxone reversed the peripheral activity of α-asarone (inflammatory phase of formalin test), indicating the possible involvement of the opioidergic pathway. In the rota-rod test, α-asarone did not change motor coordination. These findings suggest that α-asarone has anti-inflammatory, peripheral and central anti-nociceptive effects and could represent a promising agent for future research. Topics: Allylbenzene Derivatives; Analgesics; Animals; Anisoles; Anti-Inflammatory Agents; Disease Models, Animal; Edema; Hyperalgesia; Inflammation; Leukocytes; Male; Mice; Nitric Oxide Synthase Type II; Pain; Pain Measurement; Plant Extracts; Tumor Necrosis Factor-alpha | 2020 |
Development of drug-in-adhesive transdermal patch for α-asarone and in vivo pharmacokinetics and efficacy evaluation.
A transdermal drug delivery system has been reported that can increase the bioavailability, reduce the administration duration, and maintain the concentration of drug in blood. In the present study, drug-in-adhesive transdermal patches of α-asarone using Eudragit E100 as pressure-sensitive adhesives and oleic acid plus isopropyl myristate as penetration co-enhancers were developed. In vitro permeation, in vivo pharmacokinetics in rabbits, and efficacy in asthmatic rats were evaluated. The results showed that co-enhancers could induce a synergistic effect on α-asarone permeability. In vivo study suggested that the patch can keep a relatively certain blood level of drug within 10-30 h in rabbits. Furthermore, the patch with the size of 4 cm² containing drug 3 mg/cm² showed a noticeable treating effect on asthmatic rats which is equivalent to the effect of dexamethasone, while avoiding the side-effect induced by the corticorsteroid. This suggests that the drug-in-adhesive transdermal patch is a promising delivery system containing α-asarone to be used for asthma treatment. Topics: Acrylates; Adhesives; Allylbenzene Derivatives; Animals; Anisoles; Asthma; Biological Availability; Chemistry, Pharmaceutical; Delayed-Action Preparations; Drug Synergism; Inflammation; Myristates; Oleic Acid; Permeability; Polymers; Rabbits; Rats; Rats, Sprague-Dawley; Skin; Skin Absorption; Transdermal Patch | 2011 |