alogliptin has been researched along with Non-alcoholic-Fatty-Liver-Disease* in 2 studies
2 other study(ies) available for alogliptin and Non-alcoholic-Fatty-Liver-Disease
Article | Year |
---|---|
Combination effects of alogliptin and pioglitazone on steatosis and hepatic fibrosis formation in a mouse model of non-alcoholic steatohepatitis.
This study aimed to evaluate the effects of combination therapy with a dipeptidyl peptidase-4 inhibitor, alogliptin, and a peroxisome proliferator-activated receptor-γ agonist, pioglitazone, in a preclinical model of nonalcoholic steatohepatitis using low-density lipoprotein receptor-knockout mice fed a modified choline-deficient l-amino acid-defined diet. Monotherapy with either alogliptin (10-200 mg/kg) or pioglitazone (6-20 mg/kg) significantly decreased hepatic triglyceride content and fibrosis. The concomitant treatment of alogliptin (30 mg/kg), pioglitazone (20 mg/kg) also decreased hepatic triglyceride and hepatic collagen-I mRNA at greater extent compared to monotherapy. Hepatic expression of CD11b mRNA and monocyte chemoattractant protein-1 were also reduced by the concomitant treatment. These results suggest that via an anti-inflammatory potential in addition to anti-metabolic effects, the combination therapy of alogliptin and pioglitazone may provide therapeutic benefits to type 2 diabetes patients with nonalcoholic steatohepatitis, which will be proven in controlled clinical trials. Topics: Animals; Dose-Response Relationship, Drug; Drug Combinations; Hypoglycemic Agents; Liver; Liver Cirrhosis; Mice; Mice, Knockout; Non-alcoholic Fatty Liver Disease; Pioglitazone; Piperidines; Thiazolidinediones; Treatment Outcome; Uracil | 2018 |
Alogliptin alleviates hepatic steatosis in a mouse model of nonalcoholic fatty liver disease by promoting CPT1a expression via Thr172 phosphorylation of AMPKα in the liver.
Pioglitazone (PIO) has been reported to be effective for nonalcoholic fatty liver disease (NAFLD) and alogliptin (ALO) may have efficacy against NAFLD progression in patients with type 2 diabetes mellitus (T2DM). The present study examined the effectiveness of ALO in a rodent model of NAFLD and diabetes mellitus. KK‑Ay mice were used to produce an NAFLD model via administration of a choline‑deficient (CD) diet. To examine the effects of alogliptin, KK‑Ay mice were provided with a CD diet with 0.03% ALO and/or 0.02% PIO orally for 8 weeks. Biochemical parameters, pathological alterations and hepatic mRNA levels associated with fatty acid metabolism were assessed. Severe hepatic steatosis was observed in KK‑Ay mice fed with a CD diet, which was alleviated by the administration of ALO and/or PIO. ALO administration increased the hepatic carnitine palmitoyltransferase 1a (CPT1a) mRNA expression level and enhanced the Thr172 phosphorylation of AMP‑activated protein kinase α (AMPKα) in the liver. PIO administration tended to decrease the hepatic fatty acid synthase mRNA expression level and increase the serum adiponectin level. Homeostasis model of assessment‑insulin resistance values tended to improve with ALO and PIO administration. ALO and PIO alleviated hepatic steatosis in KK‑Ay mice fed with a CD diet. ALO increased hepatic mRNA expression levels associated with fatty acid oxidation. In addition, the results of the present study suggested that ALO promotes CPT1a expression via Thr172 phosphorylation of AMPKα. Topics: AMP-Activated Protein Kinases; Animals; Carnitine O-Palmitoyltransferase; Disease Models, Animal; Gene Expression Regulation, Enzymologic; Male; Mice; Mice, Knockout; Non-alcoholic Fatty Liver Disease; Phosphorylation; Piperidines; Uracil | 2018 |