alogliptin and Insulin-Resistance

alogliptin has been researched along with Insulin-Resistance* in 11 studies

Reviews

1 review(s) available for alogliptin and Insulin-Resistance

ArticleYear
Pioglitazone and alogliptin combination therapy in type 2 diabetes: a pathophysiologically sound treatment.
    Vascular health and risk management, 2010, Sep-07, Volume: 6

    Insulin resistance and islet (beta and alpha) cell dysfunction are major pathophysiologic abnormalities in type 2 diabetes mellitus (T2DM). Pioglitazone is a potent insulin sensitizer, improves pancreatic beta cell function and has been shown in several outcome trials to lower the risk of atherosclerotic and cardiovascular events. Glucagon-like peptide-1 deficiency/resistance contributes to islet cell dysfunction by impairing insulin secretion and increasing glucagon secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors improve pancreatic islet function by augmenting glucose-dependent insulin secretion and decreasing elevated plasma glucagon levels. Alogliptin is a new DPP-4 inhibitor that reduces glycosylated hemoglobin (HbA(1c)), is weight neutral, has an excellent safety profile, and can be used in combination with oral agents and insulin. Alogliptin has a low risk of hypoglycemia, and serious adverse events are uncommon. An alogliptin-pioglitazone combination is advantageous because it addresses both insulin resistance and islet dysfunction in T2DM. HbA(1c) reductions are significantly greater than with either monotherapy. This once-daily oral combination medication does not increase the risk of hypoglycemia, and tolerability and discontinuation rates do not differ significantly from either monotherapy. Importantly, measures of beta cell function and health are improved beyond that observed with either monotherapy, potentially improving durability of HbA(1c) reduction. The alogliptin-pioglitazone combination represents a pathophysiologically sound treatment of T2DM.

    Topics: Animals; Cardiovascular System; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Drug Therapy, Combination; Glucose; Glucose Tolerance Test; Humans; Hypoglycemic Agents; Incretins; Insulin Resistance; Lipid Metabolism; Liver; Mice; Pioglitazone; Piperidines; Rats; Thiazolidinediones; Uracil

2010

Trials

4 trial(s) available for alogliptin and Insulin-Resistance

ArticleYear
Add on DPP-4 inhibitor alogliptin alone or in combination with pioglitazone improved β-cell function and insulin sensitivity in metformin treated PCOS.
    Endocrine research, 2017, Volume: 42, Issue:4

    Impaired β-cell function remains unaddressed in PCOS. The aim of the study was to evaluate whether dipeptidyl peptidase-4 (DPP-4) inhibitor alogliptin (ALO) alone or in combination with pioglitazone (PIO) improves β-cell function along with insulin resistance (IR) in metformin (MET) treated obese women with PCOS with persistent IR.. In 12-week randomized study, ALO 25 mg QD (n=15) or ALO 25 mg QD and PIO 30 mg QD (n=15) was added to MET 1000 mg BID in PCOS women (aged 34.4 ± 6.5 years, BMI 39.0 ± 4.9 kg/m. ALO alone and in combination with PIO improved IR along with dynamic IS and meal related β-cell function when added to MET treated PCOS.

    Topics: Adult; Body Mass Index; Cohort Studies; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Drug Resistance; Drug Therapy, Combination; Female; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Meals; Metformin; Obesity; Pioglitazone; Piperidines; Polycystic Ovary Syndrome; Prediabetic State; Prevalence; Slovenia; Thiazolidinediones; Uracil

2017
Alogliptin: a new dipeptidyl peptidase-4 inhibitor with potential anti-atherogenic properties.
    Endocrine research, 2015, Volume: 40, Issue:2

    The aim of this study is to evaluate the effects of alogliptin on metabolic profiles in relation to those of glycemic control.. Treatment naïve subjects with type 2 diabetes received 12.5-25 mg/d alogliptin monotherapy (n = 59). A novel parameter called A1c index was used to assess the glycemic efficacy. The subjects were divided into three groups according to this index; super-responders, average responders and poor-responders. At 3 months, levels of the metabolic parameters were compared with those at baseline between super-responders (n = 20) and poor-responders (n = 21).. At baseline, total cholesterol, non-high density lipoprotein cholesterol and atherogenic index were significantly higher in super-responders than poor-responders. At 3 months, significant increases of beta-cell function (HOMA-B) and decreases of insulin resistance (HOMA-R) or these atherogenic lipids were observed in super-responders, while significant increases of HOMA-R were observed in poor-responders. Significant correlations were observed between A1c index and the changes of these atherogenic lipids. In super-responders, significant correlations were observed between the changes (Δ) of glycemic parameters (A1c index or fasting blood sugar) and ΔHOMA-R and/or ΔHOMA-B, while in poor-responders, significant correlations were observed between ΔHOMA-R and ΔHOMA-B. Lean subjects gained weight and the changes of body mass index had significant negative correlations with A1c index.. These results indicate that (1) glucose lowering efficacy of alogliptin is closely linked to atherogenic lipids. (2) alogliptin can down-regulate atherogenic lipids. (3) glycemic efficacy of alogliptin appears to be determined by the balance of its capacity in modulating insulin resistance and beta-cell function.

    Topics: Adult; Aged; Atherosclerosis; Blood Glucose; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl-Peptidase IV Inhibitors; Female; Glycated Hemoglobin; Humans; Insulin Resistance; Insulin-Secreting Cells; Lipids; Male; Middle Aged; Piperidines; Uracil

2015
Effect of combination therapy with alogliptin and lansoprazole on glycemic control in patients with type 2 diabetes.
    Endocrine journal, 2014, Volume: 61, Issue:10

    The main purpose of the current study was to investigate the effect of a combination of alogliptin [a dipeptydil peptidase (DPP)-4 inhibitor] and lansoprazole [a proton pump inhibitor (PPI)] compared with alogliptin mono-therapy on glycemic control in patients with type 2 diabetes. This study was a multicenter randomized open-label study. One hundred type 2 diabetic patients were randomly assigned to either the alogliptin with lansoprazole group or the alogliptin mono-therapy group. After 3 months of treatment, the changes in hemoglobin (Hb)A1c, fasting plasma glucose (FPG), serum gastrin, homeostasis model assessment (HOMA)-β, and HOMA-insulin resistance (IR) were evaluated. A significant decrease in HbA1c and FPG, and a significant increase in HOMA-β were observed in both groups (all with P <0.0001). However, there were no significant differences in changes in HbA1c, FPG, or HOMA-β before and after therapy between the combination and alogliptin mono-therapy group (P =0.2945, P =0.1901, P =0.3042, respectively). There was a significant elevation of serum gastrin in the combination group compared with the alogliptin mono-therapy group (P =0.0004). This study showed that, although combination therapy with alogliptin and lansoprazole more effectively elevated serum gastrin levels compared with alogliptin mono-therapy, the effect of the combination therapy on glycemic control was equal to that of alogliptin mono-therapy during a 3-month study period.

    Topics: Aged; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Drug Therapy, Combination; Female; Humans; Hypoglycemic Agents; Insulin Resistance; Lansoprazole; Male; Middle Aged; Piperidines; Treatment Outcome; Uracil

2014
Alogliptin as an initial therapy in patients with newly diagnosed, drug naïve type 2 diabetes: a randomized, control trial.
    Endocrine, 2012, Volume: 41, Issue:3

    The objectives of this study is to evaluate the efficacy and safety of alogliptin versus very low fat/calorie traditional Japanese diet (non-inferiority trial) as an initial therapy for newly diagnosed, drug naïve subjects with type 2 diabetes (T2DM). Study design was prospective, randomized, non-double-blind, controlled trial. The study was conducted at outpatient units of municipal hospital. Patients were newly diagnosed, drug naïve patients who visited the outpatient units. The patients randomly received 12.5-25 mg/day alogliptin (n = 25) or severe low calorie traditional Japanese diet (n = 26). The procedure of this trial was assessed by the consolidated standards of reporting trials statement. The primary end point was the change of HbA1c at 3 months. Secondary end points included the changes of fasting blood glucose, insulin, homeostasis model assessment-R (HOMA-R), HOMA-B, body mass index (BMI), and lipid parameters. Similar, significant reductions of HbA1c levels were observed in both groups (from 10.51 to 8.74% for alogliptin and from 10.01 to 8.39% for traditional Japanese diet) without any clinically significant adverse events. In the alogliptin group, some subjects (16%) had mild hypoglycemic evens which could be managed by taking glucose drinks by themselves. HOMA-B significantly increased in both groups with varying degrees, whereas HOMA-R significantly decreased only in the Japanese diet group. Atherogenic lipids, such as, total cholesterol, non-high density lipoprotein cholesterol, and low density lipoprotein cholesterol levels significantly decreased in both groups. BMI had no change in the alogliptin group, whereas it significantly decreased in the Japanese diet group. (1) Concerning its glycemic efficacy, alogliptin is effective and non-inferior to traditional Japanese diet as an initial therapeutic option for newly diagnosed T2DM. However, regarding the reductions of body weight and insulin resistance, traditional Japanese diet is superior. (2) Both alogliptin and traditional Japanese diet have favorable effects on atherogenic lipid profiles.

    Topics: Adult; Diabetes Mellitus, Type 2; Diet, Diabetic; Diet, Fat-Restricted; Dipeptidyl-Peptidase IV Inhibitors; Female; Glycated Hemoglobin; Hospitals, Municipal; Humans; Hyperglycemia; Hyperlipidemias; Hypoglycemia; Insulin Resistance; Japan; Male; Middle Aged; Outpatient Clinics, Hospital; Patient Dropouts; Piperidines; Uracil; Weight Loss

2012

Other Studies

6 other study(ies) available for alogliptin and Insulin-Resistance

ArticleYear
Alogliptin: a DPP-4 inhibitor modulating adipose tissue insulin resistance and atherogenic lipid.
    European journal of clinical pharmacology, 2023, Volume: 79, Issue:7

    The purpose of this study is to investigate the regulation of adipose tissue insulin resistance with DPP-4 inhibitors in treatment-naive subjects with T2DM and to examine its relation to other diabetic parameters.. A total of 147 subjects were treated with alogliptin 12.5-25 mg/day (n = 55), sitagliptin 25-50 mg/day (n = 49), or teneligliptin 10-20 mg/day (n = 43) monotherapy for 3 months. Changes in adipo-IR, a mathematical model used to evaluate adipose tissue insulin resistance, and various diabetic parameters were analyzed in this prospective, non-randomized observational study.. Among these three drugs, only alogliptin significantly reduced adipo-IR (-25.9%, p < 0.004) and some lipid parameters, such as LDL-C, T-C/HDL-C, log(TG)/HDL-C, non-HDL-C/HDL-C, and LDL-C/HDL-C. Subjects in the alogliptin group were divided into two groups with distinct changes in adipo-IR. Group A had a significant decrease in adipo-IR (-56.5%, p < 0.00001, n = 28), whereas group B had an insignificant increase (19.1%, p = 0.055, n = 27). Significant reductions in FBG or HbA1c were observed in groups A and B, respectively. Group A also showed significant reductions in HOMA-R, T-C/HDL-C, TG, log(TG)/HDL-C, non-HDL-C/HDL-C, LDL-C/HDL-C, and FFA, as well as increases in QUICKI or HDL-C. In contrast, group B showed significant reductions in QUICKI or LDL-C, and increases in HOMA-R, insulin, HOMA-B, C-peptide, or CPR-index.. In contrast to other tested DPP-4 inhibitors, alogliptin demonstrated the ability to down-regulate insulin resistance in adipose tissue, as well as certain atherogenic lipids. This study provides the initial evidence of a DPP-4 inhibitor's potential to regulate adipose tissue insulin resistance. Furthermore, adipo-IR is associated with non-LDL-C lipid parameters instead of glycemic control in those receiving alogliptin.

    Topics: Adipose Tissue; Blood Glucose; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin Resistance; Lipids; Prospective Studies; Sitagliptin Phosphate

2023
Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer's disease.
    European journal of pharmacology, 2020, Dec-15, Volume: 889

    The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-β (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aβ and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aβ (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aβ (1-42) level, GSK-3β activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.

    Topics: Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Animals; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hippocampus; Insulin Resistance; Male; Maze Learning; Peptide Fragments; Piperidines; Random Allocation; Rats; Rats, Wistar; Uracil

2020
Dipeptidyl peptidase- IV inhibitor alogliptin improves stress-induced insulin resistance and prothrombotic state in a murine model.
    Psychoneuroendocrinology, 2016, Volume: 73

    Stress evokes lipolytic release of free fatty acid (FFA) and low-grade inflammation in visceral adipose tissue, mediated by increased adipokine secretion, and contributes to glucose metabolism disorder and prothrombotic state. We tested the hypothesis that alogliptin, a dipeptidyl peptidase-4 inhibitor, can ameliorate the biological effects of chronic stress in mice.. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle or alogliptin (dose: 15 or 45mg/kg/day). Plasma levels of lipids, proinflammatory cytokines (monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin-6), and 8-hydroxydeoxyguanosine were measured with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT) was examined by CD11b-positive cell count and mRNA expression of CD68 and F4/80 was examined by immunohistochemistry and RT-PCR, respectively. The mRNA levels of the above-mentioned proinflammatory cytokines, NADPH oxidase 4, adiponectin, and coagulation factors (plasminogen activation inhibitor-1 and tissue factor) in WAT were also assessed with RT-PCR. Glucose metabolism was assessed by glucose and insulin tolerance tests, plasma levels of DPP-4 activity, glucagon-like peptide-1, expression of DPP-4, insulin receptor substrate-1 and glucose transporter 4 in WAT and skeletal muscle. Alogliptin administration suppressed stress-induced FFA release, oxidative stress, adipose tissue inflammation, DPP-4 activation, and prothrombotic state in a dose-dependent manner, and improved insulin sensitivity in stressed mice.. The results indicate that alogliptin improves stress-induced prothrombotic state and insulin resistance; suggesting that alogliptin could have beneficial therapeutic effects against cardiovascular complications in diabetic patients under stress.

    Topics: Adipose Tissue; Animals; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Inflammation; Insulin Resistance; Male; Mice; Mice, Inbred C57BL; Piperidines; Stress, Psychological; Thrombophilia; Uracil

2016
Effect of alogliptin, pioglitazone and glargine on pancreatic β-cells in diabetic db/db mice.
    Biochemical and biophysical research communications, 2011, Jan-07, Volume: 404, Issue:1

    Progressive β-cell dysfunction and loss of β-cell mass are fundamental pathogenic features of type 2 diabetes. To examine if anti-diabetic reagents, such as insulin, pioglitazone (pio), and alogliptin (alo), have protective effects on β-cell mass and function in vivo, we treated obese diabetic db/db mice with these reagents.. Male db/db mice were treated with a chow including pio, alo, or both of them from 8 to 16 weeks of age. Insulin glargine (gla) was daily injected subcutaneously during the same period.. At 16 weeks of age, untreated db/db mice revealed marked increase of HbA1c level, whereas those treated with pio, pio+alo, or insulin revealed the almost same HbA1c levels as non-diabetic db/m mice. Islet mass evaluated by direct counting in the whole pancreas and insulin content in isolated islets were preserved in pio, pio+alo and gla groups compared with untreated or alo groups, and there was no difference among pio, pio+alo and gla groups. To precisely evaluate islet β-cell functions, islet perifusion analysis was performed. In pio, pio+alo and gla groups, biphasic insulin secretion was preserved compared with untreated or alo groups. In particular, pio+alo as well as gla therapy preserved almost normal insulin secretion, although pio therapy improved partially. To examine the mechanism how these reagents exerted beneficial effects on β-cells, we evaluated expression levels of various factors which are potentially important for β-cell functions by real-time RT-PCR and immunohistochemistry. The results showed that expression levels of MafA and GLP-1 receptor were markedly decreased in untreated and alo groups, but not in pio, pio+alo and gla groups.. Combination therapy with pio and alo almost completely normalized β-cell functions in vivo, which was comparable with gla treatment.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Blood Glucose; Body Weight; Deoxyguanosine; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide-1 Receptor; Glycated Hemoglobin; Hypoglycemic Agents; Insulin; Insulin Glargine; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Insulin, Long-Acting; Maf Transcription Factors, Large; Mice; Mice, Inbred C57BL; Pioglitazone; Piperidines; Receptors, Glucagon; Thiazolidinediones; Triglycerides; Uracil

2011
Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis.
    Circulation, 2011, Nov-22, Volume: 124, Issue:21

    Dipeptidyl-peptidase 4 (DPP-4) inhibitors are increasingly used to accomplish glycemic targets in patients with type II diabetes mellitus. Because DPP-4 is expressed in inflammatory cells, we hypothesized that its inhibition will exert favorable effects in atherosclerosis.. Male LDLR(-/-) mice (6 weeks) were fed a high-fat diet or normal chow diet for 4 weeks and then randomized to vehicle or alogliptin, a high-affinity DPP-4 inhibitor (40 mg · kg(-1) · d(-1)), for 12 weeks. Metabolic parameters, blood pressure, vascular function, atherosclerosis burden, and indexes of inflammation were obtained in target tissues, including the vasculature, adipose, and bone marrow, with assessment of global and cell-specific inflammatory pathways. In vitro and in vivo assays of DPP-4 inhibition (DPP-4i) on monocyte activation/migration were conducted in both human and murine cells and in a short-term ApoE(-/-) mouse model. DPP-4i improved markers of insulin resistance and reduced blood pressure. DPP-4i reduced visceral adipose tissue macrophage content (adipose tissue macrophages; CD11b(+), CD11c(+), Ly6C(hi)) concomitant with upregulation of CD163. DPP-4 was highly expressed in bone marrow-derived CD11b(+) cells, with DPP-4i downregulating proinflammatory genes in these cells. DPP-4i decreased aortic plaque with a striking reduction in plaque macrophages. DPP-4i prevented monocyte migration and actin polymerization in in vitro assays via Rac-dependent mechanisms and prevented in vivo migration of labeled monocytes to the aorta in response to exogenous tumor necrosis factor-α and DPP-4.. DPP-4i exerts antiatherosclerotic effects and reduces inflammation via inhibition of monocyte activation/chemotaxis. These findings have important implications for the use of this class of drugs in atherosclerosis.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Pressure; Cell Movement; Chemotaxis; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Glucose; Inflammation; Insulin Resistance; Male; Metabolism; Mice; Mice, Knockout; Monocytes; Piperidines; Receptors, LDL; Time Factors; Uracil

2011
Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys.
    European journal of pharmacology, 2008, Jul-28, Volume: 589, Issue:1-3

    The aim of the present research was to characterize the pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel quinazolinone-based dipeptidyl peptidase-4 (DPP-4) inhibitor. Alogliptin potently inhibited human DPP-4 in vitro (mean IC(50), ~ 6.9 nM) and exhibited > 10,000-fold selectivity for DPP-4 over the closely related serine proteases DPP-2, DPP-8, DPP-9, fibroblast activation protein/seprase, prolyl endopeptidase, and tryptase (IC(50) > 100,000 nM). Absolute oral bioavailability of alogliptin in rats, dogs, and monkeys was 45%, 86%, and 72% to 88%, respectively. After a single oral dose of alogliptin, plasma DPP-4 inhibition was observed within 15 min and maximum inhibition was > 90% in rats, dogs, and monkeys; inhibition was sustained for 12 h in rats (43%) and dogs (65%) and 24 h in monkeys (> 80%). From E(max) modeling, 50% inhibition of DPP-4 activity was observed at a mean alogliptin plasma concentration (EC(50)) of 3.4 to 5.6 ng/ml (10.0 to 16.5 nM) in rats, dogs, and monkeys. In Zucker fa/fa rats, a single dose of alogliptin (0.3, 1, 3, and 10 mg/kg) inhibited plasma DPP-4 (91% to 100% at 2 h and 20% to 66% at 24 h), increased plasma GLP-1 (2- to 3-fold increase in AUC(0-20 min)) and increased early-phase insulin secretion (1.5- to 2.6-fold increase in AUC(0-20 min)) and reduced blood glucose excursion (31%-67% decrease in AUC(0-90 min)) after oral glucose challenge. Alogliptin (30 and 100 mg/kg) had no effect on fasting plasma glucose in normoglycemic rats. In summary, these data suggest that alogliptin is a potent and highly selective DPP-4 inhibitor with demonstrated efficacy in Zucker fa/fa rats and potential for once-daily dosing in humans.

    Topics: Administration, Oral; Animals; Biological Availability; Blood Glucose; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Drug Administration Schedule; Glucagon-Like Peptide 1; Glucose Metabolism Disorders; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Macaca fascicularis; Male; Piperidines; Rats; Rats, Sprague-Dawley; Rats, Zucker; Uracil

2008