alogliptin has been researched along with Brain-Ischemia* in 2 studies
2 other study(ies) available for alogliptin and Brain-Ischemia
Article | Year |
---|---|
The neurovascular protective effect of alogliptin in murine MCAO model and brain endothelial cells.
Endothelial damage and blood brain barrier disruption contribute to ischemic stroke and brain injury. Gliptins are a novel class of treatment agents for diabetes, and recent studies have linked the use of gliptins to neuroprotection. Alogliptin is a type of orally available gliptin that was approved for clinical use by the FDA in 2013. In this study, we investigated the neurovascular protective effects of alogliptin both in vivo and in vitro. In a murine middle cerebral artery occlusion (MCAO) stroke model, administration of alogliptin ameliorated cerebral infarction and disruption of brain vascular permeability, and restored expression of the endothelial tight junction proteins occludin and zona occludens 1 (ZO-1). In brain vascular endothelial cells exposed to oxygen and glucose deprivation/reperfusion (OGD/R), alogliptin prevented OGD/R-induced high permeability of the endothelial monolayer. Alogliptin treatment recovered the reduction in occludin and ZO-1 induced by OGD/R. Moreover, alogliptin treatment prevented OGD/R-induced induction of metalloproteinase (MMP)-2 and MMP-9, and restored expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. Collectively, our data indicate that alogliptin can improve neurovascular integrity and exerts neuroprotective effects. Topics: Animals; Brain; Brain Ischemia; Cells, Cultured; Endothelial Cells; Humans; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Occludin; Piperidines; Stroke; Uracil; Zonula Occludens-1 Protein | 2019 |
Alogliptin, a dipeptidylpeptidase-4 inhibitor, for patients with diabetes mellitus type 2, induces tolerance to focal cerebral ischemia in non-diabetic, normal mice.
Effective interventions that provide obvious neuroprotection are currently fairly limited. Glucagon-like peptide-1 (GLP-1), an enhancer of insulin production with a trophic effect on β cells in the islets, has been found to be trophic for neuronal cells. Alogliptin benzoate (AGL), a selective inhibitor of dipeptidylpeptidase-4 (DPP-4) functioning as a long-acting agonist of GLP-1, is in clinical use worldwide for patients with diabetes mellitus type 2. To clarify whether administration of AGL, independent of the insulinotropic effect, protects the brain against focal ischemia, we investigated the effect of AGL on the development of cerebral infarction in non-diabetic normal mice. Male C57BL/6J mice were administered AGL (7.5, 15, or 30μg) once a day for three weeks by intragastric gavage. After the induction of temporary focal ischemia, volumes of infarcted lesions and neurological deficits were analyzed at 24h (acute phase) and seven days (chronic phase). In the acute phase, significant reductions were observed in the volumes of infarcted lesions (p=0.009), and in the severity of neurological deficits (p=0.004), in the group treated with 15μg of alogliptin benzoate, but not the 7.5 or 30μg-treated groups. This significant reduction in volumes of infarcted lesions persisted into the chronic phase. At the end of the AGL treatment; before the induction of ischemia, the levels of brain-derived neurotrophic factor (BDNF), a potent neuroprotectant in the brain, were elevated in the cortex (p=0.008), or in the whole forebrain (p=0.023). AGL could be used as a daily neuroprotectant or an enhancer of BDNF production aiming to attenuate cerebral injuries, for the growing number of people who have the risk of ischemic stroke. Topics: Analysis of Variance; Animals; Brain Edema; Brain Infarction; Brain Ischemia; Brain-Derived Neurotrophic Factor; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Laser-Doppler Flowmetry; Male; Mice; Mice, Inbred C57BL; Microcirculation; Nervous System Diseases; Piperidines; Prosencephalon; Time Factors; Uracil | 2013 |