allopurinol and Nerve-Degeneration

allopurinol has been researched along with Nerve-Degeneration* in 9 studies

Other Studies

9 other study(ies) available for allopurinol and Nerve-Degeneration

ArticleYear
Caffeic acid phenethyl ester protects rabbit brains against permanent focal ischemia by antioxidant action: a biochemical and planimetric study.
    Brain research, 2008, Mar-27, Volume: 1201

    The present study was conducted to investigate whether caffeic acid phenethyl ester (CAPE), an active component of propolis extract, has a protective effect on brain injury after focal permanent cerebral ischemia, and to determine the possible antioxidant mechanisms. Cerebral infarction in adult male New Zealand rabbits was induced by microsurgical procedures producing right focal permanent middle cerebral artery occlusion (pMCAO). CAPE was administered to the treatment group after pMCAO at a dose of 10 micromol kg(-1) once a day intraperitoneally for 7 days. Neurological deficits were evaluated, using a modified six-point scale. Spectrophotometric assay was used to determine the contents of malondialdehyde (MDA), glutathione (GSH), catalase (CAT), nitric oxide (NO) and xanthine oxidase (XO). In the ipsilateral hemisphere, the infarct volume of the brain was assessed in brain slices stained with heamatoxylen and eosin. The results showed that treatment with CAPE significantly reduced the percentage of infarction in the ipsilateral hemisphere compared with the ischemia group. CAPE treatment significantly attenuated the elevation of plasma MDA, CAT and XO content (p<0.05), whereas it significantly increased the levels of plasma GSH and NO (p<0.05). Therefore, subacute CAPE administration plays a protective role in focal pMCAO due to attenuation of lipid peroxidation and its antioxidant activity. All of these findings suggest that CAPE provides neuroprotection against cerebral ischemia injury through its antioxidant action.

    Topics: Animals; Antioxidants; Biomarkers; Brain Infarction; Brain Ischemia; Brain Mapping; Caffeic Acids; Catalase; Enzyme Inhibitors; Glutathione; Image Processing, Computer-Assisted; Infarction, Middle Cerebral Artery; Injections, Intraperitoneal; Lipid Peroxidation; Male; Malondialdehyde; Nerve Degeneration; Neuroprotective Agents; Nitric Oxide; Oxidative Stress; Phenylethyl Alcohol; Rabbits; Spectrophotometry; Treatment Outcome; Xanthine Oxidase

2008
Cytotoxic mechanisms by M239V presenilin 2, a little-analyzed Alzheimer's disease-causative mutant.
    Journal of neuroscience research, 2004, Aug-15, Volume: 77, Issue:4

    Although neurotoxic functions are well characterized in familial Alzheimer's disease (FAD)-linked N141I mutant of presenilin (PS)2, little has been known about M239V-PS2, another established FAD-causative mutant. We found that expression of M239V-PS2 caused neuronal cytotoxicity. M239V-PS2 exerted three forms of cytotoxicity: one was sensitive to both an antioxidant glutathione-ethyl-ester (GEE) and a caspase inhibitor Ac-DEVD-CHO (DEVD); the second was sensitive to GEE but resistant to DEVD; and the third was resistant to both. The GEE/DEVD-sensitive cytotoxicity by M239V-PS2 was likely through NADPH oxidase and the GEE-sensitive/DEVD-resistant cytotoxicity through xanthine oxidase (XO). Both mechanisms by M239V-PS2 were suppressed by pertussis toxin (PTX) and were mediated by Galpha(o), but not by Galpha(i). Although Abeta1-43 itself induced no cytotoxicity, Abeta1-43 potentiated all three components of M239V-PS2 cytotoxicity. As these cytotoxic mechanisms by M239V-PS2 are fully shared with N141I-PS2, they are most likely implicated in the pathomechanism of FAD by PS2 mutations. Notably, cytotoxicity by M239V-PS2 could be inhibited by the combination of two clinically usable inhibitors of superoxide-generating enzymes, apocynin and oxypurinol.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Enzyme Inhibitors; GTP-Binding Protein alpha Subunits, Gi-Go; Intracellular Signaling Peptides and Proteins; Membrane Proteins; Mice; Mutation; NADPH Oxidases; Nerve Degeneration; Neurotoxins; Peptide Fragments; Presenilin-2; Proteins; Rats; Tumor Cells, Cultured; Xanthine Oxidase

2004
Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 305, Issue:1

    Inflammation in the brain has increasingly been recognized to play an important role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease and Alzheimer's disease. Inflammation-mediated neurodegeneration involves activation of the brain's resident immune cells, the microglia, which produce proinflammatory and neurotoxic factors, including cytokines, reactive oxygen intermediates, nitric oxide, and eicosanoids that impact on neurons to induce neurodegeneration. Hence, identification of compounds that prevent microglial activation may be highly desirable in the search for therapeutic agents for inflammation-mediated neurodegenerative diseases. In this study, we report that dextromethorphan (DM), an ingredient widely used in antitussive remedies, reduced the inflammation-mediated degeneration of dopaminergic neurons through inhibition of microglial activation. Pretreatment (30 min) of rat mesencephalic neuron-glia cultures with DM (1-10 micro M) reduced, in a dose-dependent manner, the microglia-mediated degeneration of dopaminergic neurons induced by lipopolysaccharide (LPS, 10 ng/ml). Significant neuroprotection by DM was also evident when DM was applied to cultures up to 60 min after the addition of LPS. The neuroprotective effect of DM was attributed to inhibition of LPS-stimulated microglial activation because DM significantly inhibited the LPS-induced production of tumor necrosis factor-alpha, nitric oxide, and superoxide free radicals. This conclusion was further supported by the finding that DM failed to prevent 1-methyl-4-phenylpyridinium- or beta-amyloid peptide (1-42)-induced dopaminergic neurotoxicity in neuron-enriched cultures. In addition, because LPS did not produce any significant increase in the release of excitatory amino acids from neuron-glia cultures and N-methyl-D-aspartate antagonist dizocilpine maleate failed to afford significant neuroprotection, it is unlikely that the neuroprotective effect of DM is mediated through N-methyl-D-aspartate receptors. These results suggest that DM may be a promising therapeutic agent for the treatment of Parkinson's disease.

    Topics: 1-Methyl-4-phenylpyridinium; Amyloid beta-Peptides; Animals; Cells, Cultured; Dextromethorphan; Drug Interactions; Inflammation; Lipopolysaccharides; Microglia; Nerve Degeneration; Neurons; Neuroprotective Agents; Rats; Rats, Inbred F344; Receptors, Dopamine; Superoxides; Xanthine; Xanthine Oxidase

2003
Allopurinol suppresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP(+))-induced hydroxyl radical generation in rat striatum.
    Neuroscience letters, 2001, Jun-22, Volume: 306, Issue:1-2

    We recently demonstrated that para-nonylphenol, an environmental estrogen-like chemical, enhances hydroxyl radical (*OH) generation in the rat striatum. In the present study we have examined whether para-nonylphenol enhanced 1-methyl-4-phenylpyridinium ion (MPP(+))-induced *OH generation in the rat striatum using a microdialysis technique. Para-nonylphenol significantly enhanced MPP(+)-induced *OH generation. Further, we studied the effect of allopurinol, a xanthine oxidase inhibitor, on para-nonylphenol and MPP(+)-induced *OH generation. Allopurinol significantly suppressed para-nonylphenol and MPP(+)-induced *OH generation. The results indicate that para-nonylphenol enhanced *OH generation based on superoxide anion production, and allopurinol may have preventive effect on para-nonylphenol and MPP(+)-induced *OH generation.

    Topics: 1-Methyl-4-phenylpyridinium; Allopurinol; Animals; Dose-Response Relationship, Drug; Drug Interactions; Free Radical Scavengers; Hazardous Substances; Hydroxyl Radical; Male; Microdialysis; Neostriatum; Nerve Degeneration; Parkinson Disease; Parkinson Disease, Secondary; Phenols; Rats; Rats, Wistar

2001
Superoxide-induced nitric oxide release from cultured glial cells.
    Brain research, 2001, Aug-24, Volume: 911, Issue:2

    Nitric oxide (NO) has been implicated as a potential contributor to neural cell death in a variety of neurological conditions. Cultured glial cells were exposed to extracellular superoxide generated by the action of xanthine oxidase on xanthine. In this experimental paradigm, both C6 glioma cells and primary astrocytes from rat cerebral cortex produced a rapid release of nitric oxide, measured using an NO specific electrode, in response to the applied superoxide stimulus. Application of a superoxide scavenger, or over-expression of Cu/Zn superoxide dismutase decreased the observed NO release. Authenticity of the NO signal was confirmed by the addition of the NO scavenger 2-(carboxyphenyl)-4,4,5,5-tetramethyllimidazoline-1-oxyl 3-oxide (carboxy-PTIO), which abolished the observed NO release without affecting simultaneously measured superoxide. Therefore, we suggest that glial cells may produce NO under free radical stimulation, which may be relevant to several neurological disorders where superoxide radicals are generated in the vicinity of glia. This would be predicted to result in the release of NO, which may exert toxic effects on neighbouring cells.

    Topics: Animals; Astrocytes; Benzoates; Extracellular Space; Free Radical Scavengers; Gene Expression Regulation; Genetic Vectors; Imidazoles; Metalloporphyrins; Nerve Degeneration; Neurodegenerative Diseases; Neurons; Nitric Oxide; Nitric Oxide Synthase; Oxidative Stress; Rats; RNA, Messenger; Superoxide Dismutase; Superoxide Dismutase-1; Superoxides; Transfection; Tumor Cells, Cultured; Xanthine; Xanthine Oxidase

2001
Preconditioning-induced neuroprotection is mediated by reactive oxygen species.
    Brain research, 2000, Jun-02, Volume: 866, Issue:1-2

    The current study was performed to determine the role of reactive oxygen species (ROS) in preconditioning against different forms of neuronal damage. Primary cultures of chick embryonic neurons were treated with either FeSO(4) (100 microM; 15 min) to generate hydroxyl radicals or xanthine/xanthinoxidase (10 microM/0.5 mU ml(-1); 15 min; =X/XO (pre)) to produce superoxide radicals. Both stimuli moderately enhanced ROS formation as measured by fluorescence microscopy. This preconditioning significantly protected the neurons against subsequent glutamate (1 mM)-induced excitotoxic damage, staurosporine (200 nM)-induced neuronal apoptosis and oxidative damage caused by exposure to xanthine/xanthinoxidase (500 microM/5 mU ml(-1); 1 h; =X/XO (dam)). The antioxidants vitamin E (10 microM) and 2-OH-estradiol (1 microM), present during the 15-min preconditioning period, completely abolished the protective effect of X/XO (pre). Furthermore, glutamate, staurosporine or X/XO (dam) markedly enhanced oxygen radical formation. Preceding preconditioning by mild ROS stimulation with X/XO (pre) or Fe(2+) reduced this oxygen radical burst. Again, the effect of X/XO (pre) could be blocked by coadministration of vitamin E or 2-OH-estradiol. However, the FeSO(4)-mediated preconditioning was not abolished by the radical scavengers. To address this phenomenon, the effect of vitamin E and 2-OH-estradiol on Fe(2+)- and X/XO (pre)-induced ROS formation kinetics within the 15 min of preconditioning was monitored. The moderate rise of intracellular ROS content during preconditioning was only reduced permanently by the antioxidants, when the neurons were treated with X/XO (pre), but not when Fe(2+) was used. Thus, an immediate and constant radical scavenging seems to be indispensable to abolish the ROS-induced neuronal preconditioning. The current results indicate that preconditioning by moderate ROS-stimulation protects cultured neurons against different damaging agents and prevents against the subsequent massive oxygen radical formation.

    Topics: Animals; Cells, Cultured; Chick Embryo; Ferrous Compounds; Free Radical Scavengers; Glutamic Acid; Ischemic Preconditioning; Nerve Degeneration; Neurons; Neuroprotective Agents; Neurotoxins; Reactive Oxygen Species; Staurosporine; Xanthine; Xanthine Oxidase

2000
Regeneration across cold preserved peripheral nerve allografts.
    Microsurgery, 1999, Volume: 19, Issue:3

    The feasibility of peripheral nerve allograft pretreatment utilizing cold storage (5 degrees C in the University of Wisconsin Cold Storage Solution) or freeze-thawing to prevent rejection was investigated. Regeneration across cold-stored (3 or 5 weeks) or freeze-thawed (FT), 3.0-cm sciatic nerve allografts were compared to fresh auto- and allografts in an inbred rat model. At 16-week post-engraftment, only FT allografts appeared similar to autografts on gross inspection; FT grafts were neither shrunken nor adherent to the surrounding tissue as seen in the other allograft groups. Qualitatively, the pattern of regeneration in the graft segments of the fresh allograft and to a lesser extent of pretreated allografts was inferior to that of autografts as evidenced by a disruption in the perineurium, more extrafascicular axons, smaller and fewer myelinated axons, increased intrafascicular collagen deposition, and the persistence of perineurial cell compartmentation and perivascular infiltrates. Distal to these grafts, the regeneration became more homogenous between groups, although areas of ongoing Wallerian degeneration, new regeneration as well as compartmentation, were more prevalent in fresh and pretreated allografts. Although the number of myelinated fibres was equivalent to autografts, the fibre diameters, the number of large diameter fibres, and the G-ratio were significantly decreased in the allograft groups, which, in part, accounted for the significant decrease in conduction velocity in the 3-week stored and fresh allograft, and the slight decrease in the 5-week stored and FT allograft groups. There was a small return in the Sciatic Function Index towards normal, but no consistent differences between groups were found. Prolonged cold storage and freeze-thawing of nerve allografts resulted in regeneration that was better than fresh allografts, but inferior to autografts. With the concomitant use of host immunosuppression or other immunotherapies, these storage techniques can provide a means of transporting nerve allografts between medical centres and for converting urgent into elective procedures.

    Topics: Action Potentials; Adenosine; Allopurinol; Animals; Axons; Collagen; Cryopreservation; Feasibility Studies; Freezing; Glutathione; Graft Rejection; Immunosuppression Therapy; Insulin; Male; Microsurgery; Nerve Degeneration; Nerve Fibers; Nerve Fibers, Myelinated; Nerve Regeneration; Neural Conduction; Organ Preservation Solutions; Raffinose; Rats; Rats, Inbred Lew; Sciatic Nerve; Time Factors; Transplantation, Autologous; Transplantation, Homologous; Transplantation, Isogeneic; Walking

1999
The presence of calbindin in rat cortical neurons protects in vitro from oxydative stress.
    Brain research, 1996, Jan-29, Volume: 707, Issue:2

    Free radicals are highly reactive chemicals containing an unpaired electron and are normally produced by the cellular metabolism. The oxydative stress is defined as a lack of balance between the production of free radicals and the activity of antioxydant metabolites. It induces cellular damages to lipids, proteins and membranes. Abnormal calcium metabolism can be a consequence of oxydative stress leading to increased intracellular concentrations. Calbindin D28K is a calcium binding protein which could have a neuroprotective action against various cellular insults. In this study rat cortical cell cultures were exposed during various times and at different concentrations to the couple Xanthine/Xanthine oxydase (XA/XO), which produces the superoxyde radical O2-.. Neuronal survival revealed that XA/XO is toxic for cortical cell cultures. The Calbindin D28K immunocytochemical study shows that the percentages of Calbindin positive cells are greater in surviving neurons following the XA/XO exposure compared to controls. There is a time-dependent and a dose-dependent relation between the number of surviving neurons and the percentage of Calbindin positive neurons. These results suggest that the presence of cytosolic neuronal Calbindin D28k is associated with a greater resistance to oxydative stress.

    Topics: Animals; Calbindin 1; Calbindins; Cell Survival; Cells, Cultured; Cerebral Cortex; Immunohistochemistry; Nerve Degeneration; Neurons; Oxidative Stress; Rats; S100 Calcium Binding Protein G; Superoxides; Xanthine Oxidase; Xanthines

1996
Extracellular ATP may induce neuronal degeneration by a free-radical mechanism.
    Annals of the New York Academy of Sciences, 1994, Nov-17, Volume: 738

    Topics: Adenosine Triphosphatases; Adenosine Triphosphate; Animals; Calpain; Cell Death; Cell Survival; Cyclic N-Oxides; Free Radical Scavengers; Free Radicals; Iron; L-Lactate Dehydrogenase; Lipid Peroxidation; Nerve Degeneration; Nitrogen Oxides; PC12 Cells; Pyrophosphatases; Rats; Salicylates; Salicylic Acid; Thiobarbituric Acid Reactive Substances; Xanthine Oxidase

1994