allopurinol has been researched along with Nephrosis* in 6 studies
6 other study(ies) available for allopurinol and Nephrosis
Article | Year |
---|---|
Modulation of proteinuria and renal xanthine oxidase activity by dietary proteins in acute adriamycin nephrosis in rats: lack of correlation with intra- and extracellular amino acids.
Protein restriction ameliorates proteinuria in acute adriamycin (ADR) nephrosis and decreases the renal levels of xanthine oxidase (XO), a putative mediator of ADR nephrotoxicity. Hypothetically, the effect of protein restriction on renal XO levels may be due to variations in plasma and tissue proteic amino acids (AA). To elucidate this point, the levels of AA in plasma and in renal homogenates were determined in rats with ADR nephrosis and fed diets with different protein contents: (a) high (35%) casein; (b) standard (21%) casein; (c) low (9%) casein; (d) low casein plus a synthetic mixture of Val, Leu and Ile. The protein content of the diet determined certain marked variations in plasma AA: high levels of Val, Leu and Ile were found in rats fed on a high protein diet, while the same AA were low, in rats on low protein regimen. Supplementation of the low protein diet with a synthetic mixture of branched-chain AA (Val, Leu and Ile) normalized the plasma levels of these AA. In spite of these changes, tissue AA were similar in all groups, regardless of the protein contents of the diets. Furthermore, the levels of renal XO and proteinuria were unrelated to variations in plasma AA, since both parameters were low in protein-restricted and protein-restricted AA-supplemented rats while high in rats fed a high or normoproteic diet. These data demonstrate that low protein diets induce marked alterations in plasma AA composition which are similar in may respects to those found in protein malnutrition.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acute Disease; Amino Acids; Animals; Blood Pressure; Dietary Proteins; Doxorubicin; Kidney; Kidney Function Tests; Male; Nephrosis; Proteinuria; Rats; Rats, Inbred Strains; Xanthine Oxidase | 1992 |
Low-protein diet and xanthine-metabolising enzymes in adriamycin nephrosis.
Proteinuria and renal xanthine metabolising enzymes, xanthine oxidase and xanthine dehydrogenase, were evaluated in Adriamycin-treated rats fed standard (21% casein) and low-protein (6% casein) diets. In rats fed a standard diet Adriamycin was associated with increased activities in the kidney of xanthine oxidase and xanthine dehydrogenase and induced massive proteinuria. The pharmacological block of both enzymes by allopurinol and tungsten block of both enzymes by allopurinol and tungsten reduced proteinuria to one-third of the original levels. Rats fed a low-protein diet presented decreased levels of renal xanthine oxidase and xanthine dehydrogenase and were only slightly proteinuric. Finally, rats shifted from a low-protein diet to a normal one developed massive proteinuria in spite of normal or slightly decreased levels of renal xanthine oxidase and xanthine dehydrogenase. We conclude that a low-protein diet is effective in decreasing the levels of xanthine metabolising enzymes that are in part responsible for the renal damage due to Adriamycin. This is not however the unique mechanism by which the low-protein diet protects against the development of proteinuria in Adriamycin nephrosis; other factors must also be hypothesised. Topics: Animals; Dietary Proteins; Disease Models, Animal; Doxorubicin; Male; Nephrosis; Proteinuria; Rats; Rats, Inbred Strains; Xanthine Dehydrogenase; Xanthine Oxidase; Xanthines | 1990 |
Renal purine efflux and xanthine oxidase activity during experimental nephrosis in rats: difference between puromycin aminonucleoside and adriamycin nephrosis.
1. The hypothesis was tested that the renal xanthine oxidase system provides a source of oxygen free radicals in puromycin aminonucleoside and adriamycin experimental nephrosis by generating uric acid from hypoxanthine and xanthine. 2. The concentrations in renal tissue of the putative intermediary products of puromycin aminonucleoside metabolism, hypoxanthine and xanthine, and of their precursors, adenosine and inosine, were lower in rats treated with puromycin aminonucleoside than in normal controls, whereas concentrations of the metabolites were normal after adriamycin intoxication. Their daily urinary excretion was lower in the 24 h after puromycin aminonucleoside administration compared with the baseline values and returned to near normal levels within 5 days. After adriamycin the 24 h urinary excretion of xanthine and uric acid was double the baseline levels (P less than 0.001). 3. When equimolar amounts of hypoxanthine were injected instead of puromycin aminonucleoside, the concentration of all bases increased slightly in renal tissue and their urinary efflux was double the baseline level: allantoin, uric acid, the unmodified nucleotide and xanthine were the most represented compounds in urine. 4. The enzymatic activities relative to xanthine oxidase (EC 1.1.3.22) and xanthine dehydrogenase (EC 1.1.1.204) in renal tissues were unchanged 1 day after puromycin aminonucleoside or hypoxanthine intoxication and only moderately increased in both groups at 13 days (the time of appearance of heavy proteinuria in the puromycin aminonucleoside-treated group). In contrast, xanthine oxidase and xanthine dehydrogenase activities were higher in adriamycin-treated rats at 1 and 15 days after the treatment (P less than 0.001). 5. Feeding rats with normoprotein diets containing tungsten induced a marked and constant decrease of renal xanthine oxidase and xanthine dehydrogenase activities to 20% of the baseline values in both puromycin aminonucleoside- and adriamycin-treated rats. Inhibition of renal xanthine oxidase and xanthine dehydrogenase activities by tungsten was associated with a marked reduction (P less than 0.001) of proteinuria in adriamycin-treated rats and the same occurred with allopurinol, a specific inhibitor of xanthine oxidase activity. In contrast, tungsten treatment did not reduce the proteinuria associated with puromycin aminonucleoside, which reached a maximum 13 days after puromycin aminonucleoside intoxication. Hypoxanthine-treated rats were Topics: Allantoin; Animals; Doxorubicin; Hypoxanthines; Kidney; Male; Nephrosis; Proteinuria; Purines; Puromycin Aminonucleoside; Rats; Rats, Inbred Strains; Time Factors; Uric Acid; Xanthine Dehydrogenase; Xanthine Oxidase; Xanthines | 1990 |
Effect of dietary protein restriction on renal purines and purine-metabolizing enzymes in adriamycin nephrosis in rats: a mechanism for protection against acute proteinuria involving xanthine oxidase inhibition.
1. A low protein diet prevents the development of proteinuria and glomerular damage in adriamycin experimental nephrosis without affecting renal haemodynamics. In this study the hypothesis was tested as to whether protein restriction is able to modulate the purine metabolic cycle and related enzymes such as xanthine oxidase, one of the putative effectors of adriamycin nephrotoxicity. 2. Renal activities of xanthine oxidase and purine nucleoside phosphorylase were markedly depressed in adriamycin-treated rats fed a 9% casein (low protein) diet compared with the group fed a 22% casein (normal protein) diet both 1 day after adriamycin administration and at the time of appearance of heavy proteinuria (day 15), whereas the activity of renal adenosine deaminase was unchanged. 3. The concentrations of the metabolic substrates of xanthine oxidase, i.e. hypoxanthine and xanthine, were constantly lower in renal homogenates of rats fed a low protein diet compared with those on a normal protein diet. In urine, uric acid, the product of hypoxanthine-xanthine transformation, was lower 1 day after adriamycin injection in protein-restricted rats compared with the group on a normal protein diet which showed a marked increase in its excretion. At the same time, the urinary efflux of adenosine 5'-monophosphate, which is the precursor nucleotide of the above-mentioned nucleosides and bases, was very high in rats fed a low protein diet, whereas it was absent in the group on a normal protein diet. 4. The progressive increment in proteinuria of glomerular origin (i.e. increased excretion of albumin and transferrin) typical of adriamycin-treated rats fed a normal protein diet was inhibited in the protein-restricted animals, which were normoproteinuric on day 10 and were only slightly proteinuric on day 15. 5. Like protein restriction, the pharmacological suppression of renal xanthine oxidase by dietary tungstate and the scavenging by dimethylthiourea of the putative free radical deriving from the action of xanthine oxidase, were associated with a similar (quantitative and qualitative) inhibition of glomerular proteinuria. 6. These data demonstrate that dietary protein restriction is associated with a block in purine metabolism within the kidney due to a marked reduction in the activities of two main enzymes of the cycle, i.e. purine nucleoside phosphorylase and xanthine oxidase, the latter being a putative effector of adriamycin nephrotoxicity. The partial reduction of proteinur Topics: Animals; Dietary Proteins; Disease Models, Animal; Doxorubicin; Kidney; Male; Nephrosis; Protein Deficiency; Proteinuria; Purine-Nucleoside Phosphorylase; Purines; Rats; Rats, Inbred Strains; Xanthine Oxidase | 1990 |
A role for oxygen free radicals in aminonucleoside nephrosis.
The cellular processes responsible for the proteinuria induced by the aminonucleoside of puromycin (PA) remain inadequately defined. Hypoxanthine is both a metabolic breakdown product of PA as well as a substrate for xanthine oxidase, which catalyzes its enzymatic conversion to xanthine and uric acid, yielding the superoxide anion in the process. We examined whether oxygen free radical production contributes to the development of proteinuria in this model. Seven groups of male Sprague-Dawley rats were studied. Proteinuria was quantitated and histology examined 7 days after rats were treated with PA intravenously over 5 min. PA-treated animals received either saline, dimethyl sulfoxide, superoxide dismutase, or catalase over 30 min prior to and 30 min following PA administration. Another group received allopurinol over 4 hr prior to PA. The superoxide dismutase and allopurinol treatment groups had a significant suppression of urinary protein excretion compared to the PA control group. There were also less severe glomerular morphologic changes in the superoxide dismutase group vs. the PA controls, which demonstrated a pathologic pattern that included epithelial cell blebbing, segmental mesangial cell proliferation and matrix expansion, loss of glomerular capillary lumina, and occasional adhesions between the glomerular tuft and Bowman's capsule. The allopurinol group exhibited normal glomerular morphology on light microscopy, with the exception of occasional epithelial cell blebs. All groups showed spreading of the epithelial cell cytoplasm along the glomerular basement membrane with loss of foot processes, focal areas of lifting of the epithelial cell from the glomerular basement membrane, cytoplasmic vacuolization, and protein reabsorption droplets; however, allopurinol-treated animals demonstrated these changes to a lesser extent.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Allopurinol; Animals; Catalase; Depression, Chemical; Dimethyl Sulfoxide; Disease Models, Animal; Free Radicals; Male; Nephrosis; Oxygen; Proteinuria; Puromycin; Puromycin Aminonucleoside; Rats; Rats, Inbred Strains; Superoxide Dismutase | 1986 |
Xanthinuria and xanthine calculous pyonephrosis.
Topics: Adolescent; Adult; Child; Child, Preschool; Female; Humans; Kidney Calculi; Male; Nephrosis; Purine-Pyrimidine Metabolism, Inborn Errors; Xanthine Oxidase; Xanthines | 1976 |