allopurinol has been researched along with Hypothyroidism* in 7 studies
7 other study(ies) available for allopurinol and Hypothyroidism
Article | Year |
---|---|
Association between the use of allopurinol and risk of increased thyroid-stimulating hormone level.
Allopurinol is the first-line agent for patients with gout, including those with moderate-to-severe chronic kidney disease. However, increased thyroid-stimulating hormone (TSH) levels are observed in patients with long-term allopurinol treatment. This large-scale, nested case-control, retrospective observational study analysed the association between allopurinol use and increased TSH levels. A common data model based on an electronic medical record database of 19,200,973 patients from seven hospitals between January 1997 and September 2020 was used. Individuals aged > 19 years in South Korea with at least one record of a blood TSH test were included. Data of 59,307 cases with TSH levels > 4.5 mIU/L and 236,508 controls matched for sex, age (± 5), and cohort registration date (± 30 days) were analysed. An association between the risk of increased TSH and allopurinol use in participants from five hospitals was observed. A meta-analysis (I Topics: Adult; Allopurinol; Case-Control Studies; Female; Humans; Hyperthyroidism; Hypothyroidism; Male; Odds Ratio; Republic of Korea; Retrospective Studies; Rheumatology; Risk; Risk Factors; Thyroid Function Tests; Thyrotropin; Thyroxine; Young Adult | 2021 |
Thyroid function in 36 dogs with leishmaniosis due to Leishmania infantum before and during treatment with allopurinol with or without meglumine antimonate.
Hypothyroidism may predispose to the development of canine leishmaniosis or it may appear during the course of the latter due to infiltration and destruction of the thyroid gland by infected macrophages. The main purpose of this study was to evaluate thyroid function through measurement of serum total thyroxin (tT₄), free thyroxin (fT₄), and canine thyroid stimulating hormone (cTSH) concentrations in 36 dogs with leishmaniosis, before and after 2 and 4 weeks of treatment with allopurinol with or without meglumine antimonate. Before treatment 27/36 (75%) dogs had serum tT₄ concentrations below the lower limit of the reference interval but only 2 of them had concurrently serum fT₄ concentrations below the lower limit of the reference interval and none had increased serum cTSH concentrations. During treatment there were no significant changes in serum tT₄ or fT₄ concentrations, whereas a significant increase in serum cTSH was observed. Two dogs had decreased serum tT₄ and fT₄ but normal cTSH concentrations before treatment and two other dogs had decreased serum tT₄ and increased cTSH, but normal fT₄ concentrations during the treatment period. Although hypothyroidism could not be definitively excluded in these dogs it is considered unlikely based on their overall hormonal profile, clinical presentation, and response to treatment. Therefore, hypothyroidism does not appear to be an important predisposing disease or a frequent complication of canine leishmaniosis. Topics: Allopurinol; Animals; Antiprotozoal Agents; Dog Diseases; Dogs; Drug Therapy, Combination; Female; Hypothyroidism; Leishmania infantum; Leishmaniasis, Visceral; Male; Meglumine; Meglumine Antimoniate; Organometallic Compounds; Thyrotropin; Thyroxine | 2013 |
Intensification of doxorubicin-related oxidative stress in the heart by hypothyroidism is not related to the expression of cytochrome P450 NADPH-reductase and inducible nitric oxide synthase, as well as activity of xanthine oxidase.
Cytochrome P450 NADPH-reductase (P450R), inducible synthase (iNOS) and xanthine oxidase play an important role in the antracycline-related cardiotoxicity. The expression of P450R and iNOS is regulated by triiodothyronine. The aim of this study was to evaluate the effect of methimazole-induced hypothyreosis on oxidative stress secondary to doxorubicin administration. 48 hours after methimazole giving cessation, rats were exposed to doxorubicin (2.0, 5.0 and 15 mg/kg). Blood and heart were collected 4, 48 and 96 h after the drug administration. Animals exposed exclusively to doxorubicin or untreated ones were also assessed. The hypothyreosis (0.025% of methimazole) significantly increased the doxorubicin effect on the cardiac carbonyl group and they may increase the glutathione level. An insignificant effect of methimazole was noticed in case of the cardiac lipid peroxidation product, the amount of DNA oxidative damages, iNOS and xanthine oxidase-enzymes responsible for red-ox activation of doxorubicin. However, the concentration of P450R was affected by a lower dose of methimazole in rats administered with doxorubicin. Since in rats receiving doxorubicin changes in oxidative stress caused by methimazole were not accompanied by elevation of bioreductive enzymes, it may be concluded that these changes in the oxidative stress were not related to the tested enzymes. Topics: Animals; Antibiotics, Antineoplastic; Antithyroid Agents; DNA Damage; Doxorubicin; Heart; Hypothyroidism; Male; Methimazole; Myocardium; NADPH-Ferrihemoprotein Reductase; Nitric Oxide Synthase Type II; Oxidative Stress; Rats; Rats, Wistar; Triiodothyronine; Xanthine Oxidase | 2012 |
Inducible nitric oxide synthase is involved in endothelial dysfunction of mesenteric small arteries from hypothyroid rats.
The time-dependent effects of mild hypothyroidism on endothelial function were assessed in rat mesenteric arteries. Male Wistar rats were treated with methimazole (MMI; 0.003%) or placebo up to 16 wk. Endothelial function of mesenteric small arteries was assessed by pressurized myograph. MMI-treated animals displayed a decrease in serum thyroid hormones, an increment of plasma TSH and inflammatory cytokines, and a blunted vascular relaxation to acetylcholine, as compared with controls. Endothelial dysfunction resulted from a reduced nitric oxide (NO) availability caused by oxidative excess. Vascular-inducible NO synthase (iNOS) expression was up-regulated. S-methylisothiourea (an iNOS inhibitor) normalized endothelium-dependent relaxations and restored NO availability in arteries from 8-wk MMI-animals and partly ameliorated these alterations in 16-wk MMI rats. Similar results were obtained when MMI-induced hypothyroidism was prevented by T(4) replacement. Among controls, an impaired NO availability, secondary to oxidative excess, occurred at 16 wk, and it was less pronounced than in age-matched MMI animals. Both endothelial dysfunction and oxidant excess secondary to aging were prevented by apocynin (nicotinamide adenine dinucleotide phosphate oxidase inhibitor). Mesenteric superoxide production was reduced by S-methylisothiourea and T(4) replacement in MMI animals and abolished by apocynin in controls (dihydroethidium staining). MMI-induced mild hypothyroidism is associated with endothelial dysfunction caused by a reduced NO availability, secondary to oxidative excess. It is suggested that in this animal model, characterized by TSH elevation and low-grade inflammation, an increased expression and function of iNOS, resulting in superoxide generation, accounts for an impaired NO availability. Topics: Allopurinol; Animals; Ascorbic Acid; Endothelium, Vascular; Enzyme Inhibitors; Hypothyroidism; Male; Mesenteric Arteries; Methimazole; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type II; Rats; Rats, Wistar; Superoxides; Thyroxine; Vasodilation | 2009 |
Lipid peroxidation levels in rat cardiac muscle are affected by age and thyroid status.
Free radicals, hydroxyperoxides and H(2)O(2) are all known to damage cell components. This study was designed to compare the concentrations of hydroxyperoxide and free radical scavengers in the cardiac muscles of old rats in the hyper- or hypothyroid condition, to determine whether rates of peroxidation would differ with age, thyroid status, or both. Rats were rendered hyper- or hypothyroid by administration of l-thyroxine or methimazole for 4 weeks. Among the old rats, the lipid peroxide (LPO) concentrations, measured as thiobarbituric acid (TBA) reactants, were significantly greater in the hyperthyroid than in the euthyroid state and the LPO concentrations measured as TBA+Fe(3+) reactants, which may be precursors of LPO, were significantly greater in the hyperthyroid state, whereas in young rats, the LPO concentrations measured by TBA or TBA+Fe(3+) methods did not differ significantly in the hyperthyroid state. In the euthyroid state, the concentration of LPO measured as TBA+Fe(3+) reactants was significantly reduced with age. Xanthine oxidase (XOD) activity also was markedly increased with age, being more pronounced in the hyperthyroid than in the euthyroid state. The Mn and Cu/Zn superoxide dismutase activities were greater in the hyperthyroid than in the euthyroid state. Glutathione peroxidase activity decreased with age in the euthyroid and, particularly, in the hyperthyroid state. Catalase activity was not affected in the old rats. Concentrations of alpha-tocopherol in the old rats were high in the hyperthyroid state and low in the hypothyroid state, whereas the levels of beta- and gamma-tocopherols in these rats were unchanged in both conditions as compared with the euthyroid state findings. Data suggest that the site of free radical generation differs in older rats, with additional shifts in the location of intracellular lipid peroxidation being noted during hyperthyroidism. Thus, as rats age, the reduction of the free radical scavenger system and the increase in LPO and XOD activities might induce myocardial dysfunction. Topics: Aging; Analysis of Variance; Animals; Antithyroid Agents; Glutathione Peroxidase; Hyperthyroidism; Hypothyroidism; Lipid Peroxidation; Male; Malondialdehyde; Methimazole; Myocardium; Rats; Rats, Wistar; Superoxide Dismutase; Thyroid Diseases; Thyroid Gland; Thyroxine; Vitamin E; Xanthine Oxidase | 2000 |
Hypothyroidism on Colchimax revealed by restless legs syndrome.
Topics: Aged; Allopurinol; Colchicine; Drug Combinations; Gout; Gout Suppressants; Humans; Hypothyroidism; Male; Restless Legs Syndrome | 1996 |
[Hyperuricemia due to hypoxanthine-guanine-phosphoribosyltransferase deficiency].
Topics: Adult; Allopurinol; Anemia; Arthritis; Benzofurans; Gout; Humans; Hyperlipidemias; Hypothyroidism; Hypoxanthines; Kidney Calculi; Male; Metabolism, Inborn Errors; Pedigree; Pentosyltransferases; Uric Acid; Uricosuric Agents | 1974 |