alitretinoin has been researched along with Vitamin-A-Deficiency* in 5 studies
5 other study(ies) available for alitretinoin and Vitamin-A-Deficiency
Article | Year |
---|---|
Low retinol levels differentially modulate bile salt-induced expression of human and mouse hepatic bile salt transporters.
The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRalpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXRalpha by the vitamin A derivative 9-cis retinoic acid (9cRA). Cholestasis is associated with vitamin A malabsorption. Therefore, we evaluated the role of vitamin A/9cRA in the expression of human and mouse bile salt export pump (hBSEP/mBsep), small heterodimer partner (hSHP/mShp), and mouse sodium-dependent taurocholate co-transporting polypeptide (mNtcp). HBSEP and hSHP transcription were analyzed in FXR/RXRalpha-transfected HepG2 cells exposed to chenodeoxycholic acid (CDCA) and/or 9cRA. BSEP promoter activity was determined by luciferase reporter assays, DNA-binding of FXR and RXRalpha by pull-down assays. Serum bile salt levels and hepatic expression of Bsep, Shp, and Ntcp were determined in vitamin A-deficient (VAD)/cholic acid (CA)-fed C57BL/6J mice. Results indicated that 9cRA strongly repressed the CDCA-induced BSEP transcription in HepG2 cells, whereas it super-induced SHP transcription; 9cRA reduced DNA-binding of FXR and RXRalpha. The 9cRA repressed the CDCA-induced BSEP promoter activity irrespective of the exact sequence of the FXR-binding site. In vivo, highest Bsep messenger RNA (mRNA), and protein expression was observed in CA-fed VAD mice. Shp transcription was highest in CA-fed vitamin A-sufficient mice. Ntcp protein expression was strongly reduced in CA-fed VAD mice, whereas mRNA levels were normal. CA-fed control and VAD mice had similarly increased serum bile salt levels.. We showed that 9cRA has opposite effects on bile salt-activated transcription of FXR/RXRalpha target genes. Vitamin A deficiency in CA-fed mice leads to high BSEP expression. Clearance of serum bile salts may, however, be limited because of post-transcriptional reduction of Ntcp. The molecular effects of vitamin A supplementation during cholestasis need further analysis to predict a therapeutic effect. Topics: Alitretinoin; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Carcinoma, Hepatocellular; Cell Line, Tumor; Chenodeoxycholic Acid; Cholic Acid; DNA-Binding Proteins; Gene Expression Regulation; Humans; Male; Mice; Mice, Inbred C57BL; Organic Anion Transporters, Sodium-Dependent; Receptors, Cytoplasmic and Nuclear; Response Elements; Retinoid X Receptor alpha; Symporters; Transcription Factors; Tretinoin; Vitamin A; Vitamin A Deficiency | 2009 |
RNA polymerase II association with the phosphoenolpyruvate carboxykinase (PEPCK) promoter is reduced in vitamin A-deficient mice.
Phosphoenolpyruvate carboxykinase (PEPCK) gene expression is decreased in vitamin A-deficient (VAD) mice. However, the underlying molecular mechanism at the PEPCK promoter that contributes to this alteration in gene expression remains unexplained and thus serves as the basis for our investigation in this report. Using liver from vitamin A-sufficient (VAS) and VAD mice in the chromatin immunoprecipitation (ChIP) assay, we determined that histones H3 and H4 were in the acetylated or active state in VAS mice at each of the three retinoic acid response elements (RARE1, RARE2 and RARE3) of the PEPCK promoter. The same acetylation pattern was seen in VAD mice, but with relatively lower levels of acetylated H3 and H4 bound at the region encompassing PEPCK RARE1/RARE2. In ChIP assays conducted with an antibody to RNA polymerase II (RNA Pol II), the association of RNA Pol II with PEPCK RARE1/RARE2 was significantly decreased in vitamin A deficiency. The reduction in RNA Pol II association is indicative of an interruption in the direct interactions of RNA Pol II with the PEPCK promoter, with general transcription factors and/or with coregulator molecules that contribute to the activation of the PEPCK gene. These results increase our understanding of the molecular basis for decreased PEPCK gene expression in VAD mice in vivo and offer additional insight into the regulation of other retinoid-responsive genes. Topics: Acetylation; Alitretinoin; Animals; Chromatin; Drug Combinations; Food Deprivation; Histones; Mice; Mice, Inbred C57BL; Phosphoenolpyruvate Carboxykinase (GTP); Precipitin Tests; Promoter Regions, Genetic; Response Elements; RNA Polymerase II; Tretinoin; Vitamin A Deficiency | 2003 |
Metabolism of a physiological amount of all-trans-retinol in the vitamin A-deficient rat.
Because only retinol and not all-trans-retinoic acid (atRA) can satisfy all of the functions of vitamin A, we have investigated the retinol metabolites in tissues of vitamin A-deficient (VAD) rats responding to a radioactive dose of [20-(3)H]all-trans-retinol. As expected, atRA is the major vitamin A metabolite present in the target tissues of VAD rats given a physiological dose (1 microg) of [20-(3)H]all-trans-retinol (atROL). Both atROL and atRA were detected by high-performance liquid chromatographic (HPLC) analysis of the radioactivity extracted from the liver, kidney, small intestine, lung, spleen, bone, skin, or testis of these animals. Novel retinol metabolites were observed in the aqueous extracts from the testis, lung, and skin. However, these metabolites were detected in very small amounts and were not characterized further. Importantly, neither 9-cis-retinoic acid (9cRA), 9-cis-retinol (9cROL), nor 13-cis-retinoic acid (13cRA) was present in detectable amounts. The amounts of atRA varied in each tissue, ranging from 0.29 +/- 0.05 fmol of RA/g of tissue in the femurs to 12.9 +/- 4.3 fmol of RA/g of tissue in the kidneys. The absence of 9cRA in vivo was not due to degradation of this retinoid during the extraction procedure or HPLC analysis of the extracted radioactivity. As atROL completely fulfills all of the physiological roles of vitamin A, and 9cRA is not detected in any of the tissues analyzed, these results suggest that 9cRA may have no physiological relevance in the rat. Topics: Alitretinoin; Animals; Chromatography, High Pressure Liquid; Lung; Male; Protein Isoforms; Rats; Rats, Sprague-Dawley; Retinoids; Testis; Tissue Distribution; Tretinoin; Vitamin A; Vitamin A Deficiency | 2001 |
The effect of 9-cis-retinoic acid on proliferation and differentiation of a spermatogonia and retinoid receptor gene expression in the vitamin A-deficient mouse testis.
Retinoid X receptors (RXRs) are key regulators in retinoid signaling. Knowledge about the effects of 9-cis-retinoic acid (9-cis-RA), the natural ligand for the RXRs, may also provide insight in the functions of RXRs. In this study, the effect of 9-cis-RA on spermatogenesis in vitamin A-deficient (VAD) mice was examined. Administration of 9-cis-RA stimulated the differentiation and subsequent proliferation of the growth-arrested A spermatogonia in the testis of VAD mice. However, compared with all-trans-retinoic acid (ATRA), relatively higher doses of 9-cis-RA were necessary. This could not simply be due to a lower or delayed activity of 9-cis-RA, as simultaneous administration of ATRA and 9-cis-RA did not cause a synergistic effect. Instead, the presence of 9-cis-RA diminished the effect of ATRA by approximately one third. Studies of in vivo transport and metabolism showed that ATRA and 9-cis-RA, after administration to VAD mice, penetrated the testis equally well. However, 9-cis-RA was metabolized much faster than ATRA, and other metabolites were formed. This may account for the above-described differential effects of ATRA and 9-cis-RA on spermatogenesis. Similar to ATRA, 9-cis-RA transiently induced the messenger RNA expression of the nuclear RA receptor RAR beta, suggesting a role for this receptor in the effects of retinoids on the differentiation and proliferation of A spermatogonia. In contrast, the messenger RNA expression of the nuclear retinoid receptors RXR alpha, -beta, and -gamma was not changed significantly by administration of their ligand, 9-cis-RA. Hence, 9-cis-RA does not seem to exert its effect on spermatogenesis through altered expression of the RXRs. Topics: Alitretinoin; Animals; Cell Differentiation; Cell Division; Male; Mice; Receptors, Retinoic Acid; Retinoid X Receptors; RNA, Messenger; Spermatogenesis; Spermatogonia; Testis; Transcription Factors; Tretinoin; Vitamin A Deficiency | 1998 |
Survival after treatment of small-cell lung cancer: an endless uphill battle.
Topics: Alitretinoin; Antineoplastic Agents; Carcinoma, Small Cell; Gene Deletion; Humans; Loss of Heterozygosity; Lung Neoplasms; Mutation; Neoplasms, Second Primary; Smoking; Survival Analysis; Tretinoin; Vitamin A Deficiency | 1997 |