alitretinoin and Neuroblastoma

alitretinoin has been researched along with Neuroblastoma* in 14 studies

Other Studies

14 other study(ies) available for alitretinoin and Neuroblastoma

ArticleYear
Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors
    Journal of medicinal chemistry, 2022, 04-28, Volume: 65, Issue:8

    Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (

    Topics: Animals; Animals, Genetically Modified; Heterografts; Humans; Neuroblastoma; Receptors, Calcitriol; Vitamins

2022
Changes in gene expression profiling of apoptotic genes in neuroblastoma cell lines upon retinoic acid treatment.
    PloS one, 2013, Volume: 8, Issue:5

    To determine the effect of retinoic acid (RA) in neuroblastoma we treated RA sensitive neuroblastoma cell lines with 9-cis RA or ATRA for 9 days, or for 5 days followed by absence of RA for another 4 days. Both isomers induced apoptosis and reduced cell density as a result of cell differentiation and/or apoptosis. Flow cytometry revealed that 9-cis RA induced apoptosis more effectively than ATRA. The expression profile of apoptosis and survival pathways was cell line specific and depended on the isomer used.

    Topics: Alitretinoin; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Shape; Cell Survival; Drug Resistance, Neoplasm; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Neuroblastoma; Transcriptome; Tretinoin

2013
Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells.
    Oncogene, 2006, Jan-12, Volume: 25, Issue:2

    Long-term treatment with all trans-retinoic acid (RA) induces neuronal differentiation and apoptosis. However, the effect of short-term RA treatment on cell proliferation, migration and invasion of neuroblastoma cell lines (SH-SY5Y and IMR-32) remains unclear. RA induces expression of tissue-transglutaminase (TGase) and promotes migration and invasion after 24 h of treatment in SH-SY5Y cells, but not in IMR-32 cells. RA receptor (RAR) agonist (4-(E-2-[5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl]-1-propenyl) benzoic acid) and RAR/retinoid X receptor (RXR) agonist (9-cis-RA) promote expression of TGase, migration and invasion of SH-SY5Y cells, while RXR agonist has no significant effect. RAR antagonist blocks RA effect on migration and invasion, indicating that RAR receptors are required. Retinoid receptors are expressed and activated by RA in both cell lines. However, only transient activation of RAR is observed in IMR-32 cells. These findings suggest that different responses observed in SH-SY5Y and IMR-32 cells could be due to differential activation of retinoid receptors. Overexpression of TGase has no effect on migration or invasion, while overexpression of antisense TGase blocks RA-induced migration and invasion, indicating that other molecules along with TGase mediate RA effects. In addition to the long-term effects of RA that are coupled with cell differentiation, short-term effects involve migration and invasion of neuroblastoma SH-SY5Y cells.

    Topics: Alitretinoin; Antineoplastic Agents; Bexarotene; Cell Differentiation; Cell Movement; Cell Proliferation; Cells, Cultured; Gene Expression Regulation, Neoplastic; GTP-Binding Proteins; Humans; Kidney; Neoplasm Invasiveness; Neuroblastoma; Protein Glutamine gamma Glutamyltransferase 2; Receptors, Retinoic Acid; Retinoid X Receptors; Signal Transduction; Tetrahydronaphthalenes; Transglutaminases; Tretinoin

2006
MAT1-modulated cyclin-dependent kinase-activating kinase activity cross-regulates neuroblastoma cell G1 arrest and neurite outgrowth.
    Cancer research, 2004, May-01, Volume: 64, Issue:9

    Cyclin-dependent kinase-activating kinase (CAK) regulates cell cycle G1 exit, where cells commonly commit either to proliferate or to differentiate. CAK activity in G1 regulation is determined by its assembly factor and targeting subunit, ménage à trois 1 (MAT1). The precise mechanism of how proliferation/differentiation transition is induced from cancer cell G1 arrest remains unknown. We present evidence that in neuroblastoma CHP126 cells, CAK interacts with and phosphorylates retinoblastoma tumor suppressor protein (pRb) and retinoid X receptor alpha (RXRalpha). Retinoic acid (RA)-induced neuroblastoma cell proliferation/differentiation transition is associated with decreased CAK activity, as evidenced by a switch from CAK hyperphosphorylation of pRb and RXRalpha to hypophosphorylation of pRb and RXRalpha. Manipulation of MAT1 abundance shows that MAT1 reduction mimics RA-induced hypophosphorylation of pRb/RXRalpha, proliferation inhibition, and neurite outgrowth, whereas MAT1 overexpression resists these RA actions. Thus, these findings reveal an important mechanism by which MAT1-modulated CAK activity is crucial in the switch from proliferation to differentiation in neuroblastoma cells.

    Topics: Alitretinoin; Cell Differentiation; Cell Division; Cell Line, Tumor; Enzyme Activation; G1 Phase; Humans; Neurites; Neuroblastoma; Phosphorylation; Receptors, Retinoic Acid; Retinoblastoma Protein; Retinoid X Receptors; Transcription Factors; Tretinoin

2004
Retinoid X receptors and retinoid response in neuroblastoma cells.
    Journal of cellular biochemistry, 2002, Volume: 86, Issue:1

    Retinoic acid (RA) modulates differentiation and apoptosis of neural cells via RA receptors (RARs) and retinoid X receptors (RXRs). Neuroblastoma cells are potentially useful models for elucidating the molecular mechanisms of RA in neural cells, and responses to different isomers of RA have been interpreted in terms of differential homo- and heterodimerization of RXRs. The aim of this study was to identify the RXR types expressed in neuroblast and substrate-adherent neuroblastoma cells, and to study the participation of these RXRs in RAR heterodimers. RXRbeta was the predominant RXR type in N-type SH SY 5Y cells and S-type SH EP cells. Gel shift and supershift assays demonstrated that RARbeta and RARgamma predominantly heterodimerize with RXRbeta. In SH SY 5Y cells, RARgamma/RXRbeta was the predominant heterodimer binding to the DR5 RARE in the absence of 9-cis RA (9C), whereas the balance shifted in favor of RARbeta/RXRbeta in the presence of ligand. There was a marked difference between the N- and S-type neuroblastoma cells in retinoid receptor-DNA interactions, and this may underlie the differential effects of retinoids in these neuroblastoma cell types. There was no evidence to indicate that 9C functions via RXR homodimers in either SH SY 5Y or SH EP neuroblastoma cells. The results of this study suggest that interactions between retinoid receptors and other nuclear proteins may be critical determinants of retinoid responses in neural cells.

    Topics: Alitretinoin; Dimerization; Gene Expression Regulation, Neoplastic; Humans; Neuroblastoma; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; Signal Transduction; Transcription Factors; Tretinoin; Tumor Cells, Cultured

2002
Retinoid signalling and gene expression in neuroblastoma cells: RXR agonist and antagonist effects on CRABP-II and RARbeta expression.
    Journal of cellular biochemistry, 2002, Volume: 87, Issue:3

    9-cis Retinoic acid (RA) induces gene expression in neuroblastoma cells more effectively and with different kinetics than other RA isomers, and could be acting in part through Retinoid X Receptors (RXRs). The aim of this study was to characterise the effects of an RXR agonist and RXR homodimer antagonist on the induction of cellular RA binding protein II (CRABP-II) and RA receptor-beta (RARbeta) in neuroblastoma cells in response to different retinoids. The RXR agonist, LDG1069, was as effective as all-trans RA in inducing gene expression, but less effective than 9-cis RA. The RXR-homodimer antagonist, LG100754, inhibited the induction of CRABP-II mRNA in SH-SY5Y neuroblastoma cells by 9-cis RA or the RXR-specific agonist LGD1069, but had no effect when used with all-trans RA. Conversely, LG100754 did not inhibit induction of RARbeta mRNA by 9-cis or all-trans RA, or by LGD1069. RAR- and RXR-specific ligands used together induced CRABP-II and RARbeta as effectively as 9-cis RA. These results demonstrate the value of combining RXR- and RAR-specific ligands to regulate RA-inducible gene expression. The possibility that RXR-homodimers mediate, in part, the induction of CRABP-II by 9-cis RA and RXR-specific ligands is discussed.

    Topics: Alitretinoin; Bexarotene; Dose-Response Relationship, Drug; Gene Expression; Humans; Neuroblastoma; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; RNA, Messenger; Signal Transduction; Tetrahydronaphthalenes; Transcription Factors; Tretinoin; Tumor Cells, Cultured

2002
Synergistic anti-proliferative effects of vitamin D derivatives and 9-cis retinoic acid in SH-SY5Y human neuroblastoma cells.
    The Journal of steroid biochemistry and molecular biology, 2001, Volume: 77, Issue:4-5

    This study examines the effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)(2)D(3) or its derivatives, but significantly decreased in the presence of the two retinoids (0.001--10 microM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or 10 nM KH 1060, and 1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 microM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)(2)D(3) or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 microM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)(2)D(3) or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.

    Topics: Acetylcholinesterase; Alitretinoin; Antineoplastic Agents; Cell Division; Drug Synergism; Gene Expression; Humans; Neuroblastoma; Proto-Oncogene Proteins c-myc; Steroid Hydroxylases; Tretinoin; Tumor Cells, Cultured; Vitamin D

2001
The vitamin A analogues: 13-cis retinoic acid, 9-cis retinoic acid, and Ro 13-6307 inhibit neuroblastoma tumour growth in vivo.
    Medical and pediatric oncology, 2001, Volume: 36, Issue:1

    Neuroblastoma, a childhood tumour of the sympathetic nervous system, may undergo spontaneous differentiation or regression due to apoptosis after no or minimal therapy. However, the majority of neuroblastomas are diagnosed as metastatic tumours with a poor prognosis in spite of intensive multimodal therapy. Vitamin A and its analogues (retinoic acid, RA) play an important role in normal cel lular differentiation and programmed cell death. RA regulates neuroblastoma growth and differentiation in vitro, and has shown activity against human neuroblastoma in vivo.. Recently, 9-cis RA was shown to induce apoptosis in vitro in neuroblastoma using a 5 days short-term treatment and subsequent washout. In the present study, nude rats with human neuroblastoma SH-SY5Y xenografts were treated with 13-cis RA (4 mg po daily), 9-cis RA (5 mg po daily) or the novel analogue Ro 13-6307 (0.3 mg po daily) using either a continuous or short-term schedule.. ALL three different retinoids decreased neuroblastoma growth significantly in terms of tumour weight after 8-12 days when compared to untreated controls (P < 0.05). Minor signs of toxicity in 13-cis RA treated rats were observed. However, severe toxicity with significant weight loss was seen in all rats treated with 9-cis RA and Ro 13-6307. Toxicity was more pronounced with the continuous regimen.. We conclude that different retinoids reduce neuroblastoma tumour growth in vivo. Drug scheduling and dosage may affect both therapeutic efficacy and toxic side effects. Further in vivo studies are warranted, including pharmacokinetic and molecular analyses, before clinical trials with promising retinoids like 9-cis RA and Ro 13-6307 can be started in children with neuroblastoma.

    Topics: Alitretinoin; Animals; Antineoplastic Agents; Body Weight; Cell Differentiation; Cell Division; Diarrhea; Drug Administration Schedule; Fatty Acids, Unsaturated; Female; Humans; Isotretinoin; Male; Mice; Neoplasm Transplantation; Neuroblastoma; Rats; Rats, Nude; Tretinoin; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2001
Real time RT-PCR shows correlation between retinoid-induced apoptosis and NGF-R mRNA levels.
    Biochemical and biophysical research communications, 2001, Dec-07, Volume: 289, Issue:3

    Neurotrophins and retinoic acid have a critical role in the differentiation and the survival of neurons. All-trans-, 9-cis-retinoic acid (10(-6) M) or NGF (50-100 ng/ml) induced morphologic differentiation and inhibited cell growth in SH-SY5Y neuroblastoma cells after 7 days of culture. Continuous treatment of undifferentiated cells with all-trans- or 9-cis-retinoic (10(-6) M) did not induce apoptosis, whereas NGF-differentiated cells showed dramatic apoptosis after 2 to 4 days of retinoic acid treatment as evidenced by TUNEL reaction and flow cytometry analysis following propidium iodide staining. Addition of Ro41-5253 blocked all-trans-retinoic-induced apoptosis, suggesting that the apoptotic signaling pathway was mediated by RARs. The effects of all-trans- or 9-cis-retinoic acid on the expression of NGF receptors was evaluated using real-time fluorescence reverse transcription-PCR. A slight transient increase in the expression of p75(NGFR) mRNA was observed by 2 to 4 h after retinoid treatment of undifferentiated cells, whereas a larger increase in the expression of both TrkA and p75(NGFR) mRNA up to threefold the basal level, was observed by 2 to 6 h after retinoid treatment of NGF-differentiated cells. Our results suggest that NGF-differentiated cells may be more susceptible to retinoid-induced apoptosis than undifferentiated cells.

    Topics: Alitretinoin; Animals; Apoptosis; Cell Differentiation; Cell Division; Flow Cytometry; Kinetics; Nerve Growth Factor; Neurites; Neuroblastoma; Neurons; Receptor, Nerve Growth Factor; Receptor, trkA; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Transcriptional Activation; Tretinoin; Tumor Cells, Cultured

2001
Bioavailability and dose-dependent anti-tumour effects of 9-cis retinoic acid on human neuroblastoma xenografts in rat.
    British journal of cancer, 2001, Dec-14, Volume: 85, Issue:12

    Neuroblastoma, the most common extracranial solid tumour in children, may undergo spontaneous differentiation or regression, but the majority of metastatic neuroblastomas have poor prognosis despite intensive treatment. Retinoic acid regulates growth and differentiation of neuroblastoma cells in vitro, and has shown activity against human neuroblastomas in vivo. The retinoid 9-cis RA has been reported to induce apoptosis in vitro, and to inhibit the growth of human neuroblastoma xenografts in vivo. However, at given dosage, the treatment with 9-cis RA caused significant toxic side effects. In the present study we investigated the bioavailability of 9-cis RA in rat. In addition, we compared two different dose schedules using 9-cis RA. We found that a lower dose of 9-cis RA (2 mg day(-1)) was non-toxic, but showed no significant effect on tumour growth. The bioavailability of 9-cis RA in rat was 11% and the elimination half-life (t1/2) was 35 min. Considering the short t1/2, we divided the toxic, but tumour growth effective dose 5 mg day(-1) into 2.5 mg p.o. twice daily. This treatment regimen showed no toxicity but only limited effect on tumour growth. Our results suggest that 9-cis RA may only have limited clinical significance for treatment of children with poor prognosis neuroblastoma.

    Topics: Administration, Oral; Alitretinoin; Animals; Antineoplastic Agents; Biological Availability; Cell Differentiation; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Drug Administration Schedule; Half-Life; Humans; Male; Neuroblastoma; Rats; Rats, Sprague-Dawley; Tretinoin; Xenograft Model Antitumor Assays

2001
Receptor mechanisms mediating differentiation and proliferation effects of retinoids on neuroblastoma cells.
    Neuroscience letters, 2000, Jan-28, Volume: 279, Issue:2

    The aim of this study was to clarify retinoid receptor mechanisms mediating the effects of 9-cis retinoic acid (RA) and investigate the ability of RAR- and RXR-specific analogues to induce differentiation and inhibit proliferation in neuroblastoma cells. Differentiation and the inhibition of proliferation by 9-cis RA, but not all-trans RA, were inhibited by the RXR-homodimer antagonist LG745. The RXR-specific agonist LGD1069 was ineffective at inducing differentiation or inhibiting proliferation, but showed marked synergism with RAR-specific agonists with respect to inhibiting proliferation. These data suggest that the effects of 9-cis RA are mediated via both RXR-homodimers and heterodimers. However, combinations of RAR- and RXR-selective analogues were not as effective at promoting differentiation. This study indicates that different receptor mechanisms are involved in retinoid-induced differentiation and inhibition of proliferation in neuroblastoma cells.

    Topics: Alitretinoin; Bexarotene; Cell Differentiation; Cell Division; Dimerization; Humans; Neuroblastoma; Receptors, Retinoic Acid; Retinoid X Receptors; Retinoids; Tetrahydronaphthalenes; Transcription Factors; Tretinoin; Tumor Cells, Cultured

2000
9-cis retinoic acid--a better retinoid for the modulation of differentiation, proliferation and gene expression in human neuroblastoma.
    Journal of neuro-oncology, 1997, Volume: 31, Issue:1-2

    To date, the clinical success of 13-cis or all-trans retinoic acid in the treatment of neuroblastoma has been disappointing. In vivo, 13-cis will isomerise to both all-trans and 9-cis retinoic acid, believed to be the main biologically-active isomers. In vitro studies with an N-type neuroblastoma cell line, SH SY 5Y, show that 9-cis is better than other isomers at both inducing morphological differentiation and inhibiting proliferation. RAR-beta, a gene which may mediate retinoic acid responsiveness and be of prognostic significance, is also more-effectively induced by 9-cis retinoic acid. 9-cis and all-trans retinoic acid do not have synergistic effects on SH SY 5Y cell proliferation and gene expression. A retinoid X receptor (RXR)-specific analogue of 9-cis retinoic acid had similar effects on gene expression to 9-cis retinoic acid alone. In view of these results, 9-cis retinoic acid or stable analogues of this retinoid may have potential for the treatment of neuroblastoma.

    Topics: Alitretinoin; Blotting, Northern; Cell Differentiation; Cell Division; Gene Expression Regulation, Neoplastic; Humans; Neuroblastoma; RNA, Messenger; Tretinoin; Tumor Cells, Cultured

1997
Apoptosis of N-type neuroblastoma cells after differentiation with 9-cis-retinoic acid and subsequent washout.
    Journal of the National Cancer Institute, 1997, Mar-19, Volume: 89, Issue:6

    The overall survival rate for patients with neuroblastoma has improved over the past two decades, but long-term survival for the subgroup of patients with high-risk disease remains low. In recent years, there has been interest in the potential clinical use of drugs able to induce differentiation of neuroblastoma cells. Since 9-cis-retinoic acid induces better and more sustained differentiation of neuroblastoma in vitro than other retinoic acid isomers, this may be a more appropriate retinoid for use in neuroblastoma therapy.. The purpose of this work was to compare the long-term effects of all-trans- and 9-cis-retinoic acid on neuroblastoma differentiation using an N-type (neuroblastic) cell line, SH SY 5Y, as an in vitro model. In addition, we wanted to find out whether 9-cis-retinoic acid would induce programmed cell death (apoptosis) in these N-type neuroblastoma cells and to determine whether the effects of either 9-cis- or all-trans-retinoic acid are dependent on their continued presence in the culture medium.. SH SY 5Y cells were incubated in either the continued presence of all-trans- or 9-cis-retinoic acid or for 5 days with retinoic acid followed by culture in the absence of retinoid for up to 13 days. Morphologic changes were observed using phase-contrast and scanning electron microscopy. Apoptosis was determined by flow cytometry of propidium iodide-stained cells and by using terminal deoxynucleotidyl transferase to end-label DNA fragments in situ in apoptotic cells.. Culture of SH SY 5Y cells with all-trans- or 9-cis retinoic acid for 5 days induced morphologic differentiation and inhibited cell growth. These effects were maintained in the continuous presence of each retinoic acid isomer but were more profound in cells treated with 9-cis-retinoic acid. The differentiation of cells treated with all-trans-retinoic acid was reversible once retinoic acid was removed from the medium. Conversely, apoptosis was induced in cells treated with 9-cis-retinoic acid for 5 days and cultured for 9 days (4 days after washout) but not in cells cultured in the continuous presence of 9-cis-retinoic acid. This effect was specific to 9-cis-retinoic acid.. Previous studies have demonstrated differential responses to all-trans-retinoic acid in N- and S-type (substrate-adherent or Schwann-like) neuroblastoma cells: Apoptosis is induced in S-type cells, whereas differentiation occurs in N-type cells. The present results show that, unlike all-trans-retinoic acid, 9-cis-retinoic acid induces both differentiation and apoptosis in N-type SH SY 5Y neuroblastoma cells. However, apoptosis was dependent on removal of 9-cis-retinoic acid from the culture medium.. Since both differentiation and apoptosis are involved in tumor regression, 9-cis-retinoic acid may be a more appropriate retinoid for clinical trials in neuroblastoma. The dependence of apoptosis on treatment and subsequent removal of 9-cis-retinoic acid implies that drug scheduling may be an important parameter affecting therapeutic efficacy.

    Topics: Alitretinoin; Antineoplastic Agents; Apoptosis; DNA Nucleotidylexotransferase; Flow Cytometry; Immunoenzyme Techniques; Neuroblastoma; Time Factors; Tretinoin; Tumor Cells, Cultured

1997
Retinoids in neuroblastoma therapy: distinct biological properties of 9-cis- and all-trans-retinoic acid.
    European journal of cancer (Oxford, England : 1990), 1997, Volume: 33, Issue:12

    We investigated the potential for 9-cis-retinoic acid in the differentiation therapy of neuroblastoma using an N-type neuroblastoma cell line, SH SY 5Y, as an experimental model. In these cells, 9-cis-retinoic acid is more effective than other isomers at inducing the expression of RAR-beta. An RAR-alpha-specific antagonist inhibited the induction of RAR-beta in response to all-trans-but not to 9-cis-retinoic acid. This indicates that the mechanism of gene induction by 9-cis-retinoic acid differs markedly from all-trans-retinoic acid. 9-cis-retinoic acid is also better than all-trans at producing sustained morphological differentiation and inhibition of proliferation of SH SY 5Y cells. Although N-type neuroblastoma cells are not thought to undergo apoptosis in response to all-trans-retinoic acid, we observed a significant degree of apoptosis in SH SY 5Y cells treated with 9-cis-retinoic acid for 5 days and then cultured in the absence of retinoid, an effect not observed in cells treated with the all-trans isomer. These results suggest that 9-cis- and all-trans-retinoic acid have distinct biological properties and that 9-cis retinoic acid may be clinically effective in neuroblastoma by inducing both differentiation and apoptosis under an appropriate treatment regimen.

    Topics: Alitretinoin; Antineoplastic Agents; Apoptosis; Benzoates; Cell Differentiation; Cell Division; Chromans; Drug Screening Assays, Antitumor; Humans; Neuroblastoma; Receptors, Retinoic Acid; Retinoic Acid Receptor alpha; Tretinoin; Tumor Cells, Cultured

1997