aliskiren and Hypertension--Renovascular

aliskiren has been researched along with Hypertension--Renovascular* in 7 studies

Other Studies

7 other study(ies) available for aliskiren and Hypertension--Renovascular

ArticleYear
Aliskiren improves renal morphophysiology and inflammation in Wistar rats with 2K1C renovascular hypertension.
    Histology and histopathology, 2020, Volume: 35, Issue:6

    Hypertension is characterized by persistent elevated blood pressure levels, one of the leading causes of death in the world. Renovascular hypertension represents the most common cause of secondary hypertension, and its progress is associated with overactivation of the renin angiotensin aldosterone system (RAAS), causing systemic and local changes. Aliskiren is a renin-inhibiting drug that optimizes RAAS suppression. In this sense, the objective of the present study was to analyze the morphophysiology of the left kidney in Wistar rats with renovascular hypertension after treatment with Aliskiren. Parameters such as systolic blood pressure, urinary creatinine and protein excretion, renal cortex structure and ultrastructure, fibrosis and tissue inflammation were analyzed. Our results showed that the hypertensive animals treated with Aliskiren presented a reestablishment of blood pressure, expression of renin, and renal function, as well as a remodeling of morphological alterations through the reduction of fibrosis. The treatment regulated the laminin expression and decreased pro-inflammatory cytokines, restoring the integrity of the glomerular filtration barrier. Therefore, our findings suggest that Aliskiren has a renoprotective effect acting on the improvement of the morphology, physiology and pathology of the renal cortex of animals with renovascular hypertension.

    Topics: Amides; Animals; Antihypertensive Agents; Disease Models, Animal; Fibrosis; Fumarates; Hypertension, Renovascular; Inflammation; Kidney; Rats; Renin-Angiotensin System

2020
Direct renin inhibition is not enough to prevent reactive oxygen species generation and vascular dysfunction in renovascular hypertension.
    European journal of pharmacology, 2018, Feb-15, Volume: 821

    Renin-angiotensin system activation promotes oxidative stress and endothelial dysfunction. However, no previous study has examined the effects of the renin inhibitor aliskiren, either alone or combined with angiotensin II type 1 antagonists on alterations induced by two-kidney, one-clip (2K1C) hypertension. We compared the vascular effects of aliskiren (50mg/kg/day), losartan (10mg/kg/day), or both by gavage for 4 weeks in 2K1C and control rats. Treatment with losartan, aliskiren, or both exerted similar antihypertensive effects. Aliskiren lowered plasma Ang I concentrations in sham rats and in hypertensive rats treated with aliskiren or with both drugs. Aliskiren alone or combined with losartan decreased plasma angiotensin II concentrations measured by high performance liquid chromatography, whereas losartan alone had no effects. In contrast, losartan alone or combined with aliskiren abolished hypertension-induced increases in aortic angiotensin II concentrations, whereas aliskiren alone exerted no such effects. While hypertension enhanced aortic oxidative stress assessed by dihydroethidium fluorescence and by lucigenin chemiluminescence, losartan alone or combined with aliskiren, but not aliskiren alone, abolished this alteration. Hypertension impaired aortic relaxation induced by acetylcholine, and losartan alone or combined with aliskiren, but not aliskiren alone, reversed this alteration. Losartan alone or combined with aliskiren, but not aliskiren alone, increased plasma nitrite concentrations in 2K1C rats. These findings show that antihypertensive effects of aliskiren do not prevent hypertension-induced vascular oxidative stress and endothelial dysfunction. These findings contrast those found with losartan and suggest that renin inhibition is not enough to prevent hypertension-induced impaired redox biology and vascular dysfunction.

    Topics: Amides; Angiotensin I; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Aorta; Drug Synergism; Fumarates; Hypertension, Renovascular; Losartan; Male; Nitrites; Oxidative Stress; Rats; Reactive Oxygen Species; Relaxation; Renin

2018
Therapeutic evaluation of rutin in two-kidney one-clip model of renovascular hypertension in rat.
    Life sciences, 2016, Apr-01, Volume: 150

    The current investigation, designed to investigate the role of rutin in two-kidney one-clip (2K1C) induced renovascular dysfunction associated with hypertension in rat.. The renovascular hypertension was developed by the application of vascular clip on left renal artery in rats; the right kidney was kept as such throughout the experimental protocol. The rutin (200 and 300 mg/kg; p.o.) and aliskiren (50mg/kg; p.o.) were administered for 9 consecutive days. The battery of pathophysiological tests i.e., systolic pressure, diastolic pressure and heart rate were performed to assess the anti-hypertensive effect of rutin. In addition, changes of kidney weight/body weight (KW/BW) ratio along with plasma renin content and renal tissue biomarkers i.e., thiobarbituric acid reactive substance (TBAR) and reduced glutathione (GSH) levels were estimated.. The administration of rutin significantly (P<0.05) attenuated the 2K1C of left kidney induced elevated systolic and diastolic pressure in a dose dependent manner. In addition, it also reduces the ratio of KW/BW along with a decrease in plasma renin content, tissue TBARS and increase the GSH levels. There were no significant changes observed in heart rate. Similar results were observed in aliskiren treated group.. The anti-hypertensive effect of rutin may be a useful herbal medicine for the management of hypertension due to its potential free radical scavenging, inhibition of lipid peroxidation and plasma renin inhibitory action.

    Topics: Amides; Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Dose-Response Relationship, Drug; Fumarates; Glutathione; Heart Rate; Hypertension, Renovascular; Male; Organ Size; Rats; Rats, Sprague-Dawley; Renin; Rutin; Thiobarbituric Acid Reactive Substances

2016
Aliskiren and l-arginine treatments restore depressed baroreflex sensitivity and decrease oxidative stress in renovascular hypertension rats.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2016, Volume: 39, Issue:11

    Renovascular hypertension is characterized by increased angiotensin II and oxidative stress, and by endothelial dysfunction. The purpose of this study was to test whether the administration of aliskiren (ALSK) and l-arginine (l-ARG) would restore impaired baroreflex sensitivity and reduce oxidative stress in a rat renovascular hypertension model. Hypertension was induced by clipping the left renal artery, and the following five groups were created: SHAM; two-kidney, 1-clip (2K1C); 2K1C plus ALSK (ALSK); 2K1C plus l-ARG (l-ARG); and 2K1C plus ALSK+l-ARG (ALSK+l-ARG). After 21 days of treatment, only the ALSK+l-ARG group was effective in normalizing the arterial pressure (108.8±2.8 mm Hg). The l-ARG and ALSK+l-ARG groups did not show hypertrophy of the left ventricle. All the treatments restored the depressed baroreflex sensitivity to values found in the SHAM group. Acute administration of TEMPOL restored the depressed baroreflex sensitivity in the 2K1C group to values that resembled those presented by the other groups. All treatments were effective for an increase in the antioxidant pathway and reduction in the oxidative pathway. In conclusion, the treatment with ALSK or l-ARG reduced oxidative stress and restored reduced baroreflex sensitivity in renovascular hypertension. In addition, the treatments were able to normalize blood pressure and reverse left ventricular hypertrophy when used in combination.

    Topics: Amides; Animals; Arginine; Baroreflex; Blood Pressure; Catalase; Fumarates; Heart Rate; Hypertension, Renovascular; Kidney; Male; Oxidative Stress; Rats; Rats, Wistar; Superoxide Dismutase; Sympathetic Nervous System

2016
Combined Aliskiren and L-arginine treatment reverses renovascular hypertension in an animal model.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2015, Volume: 38, Issue:7

    Renovascular hypertension is characterized by increased renal sympathetic activity, angiotensin II and by endothelial dysfunction. The purpose of this study was to determine the role of renal sympathetic nerve activity (RSNA) in mediating the anti-hypertensive effects of aliskiren (ALSK) and L-arginine (L-ARG) in a rat renovascular hypertension model. Hypertension was induced by clipping the right renal artery, and the following five groups were divided: SHAM operated; 2-kidney, 1-clip (2K1C); 2K1C plus ALSK; 2K1C plus L-ARG; and 2K1C plus ALSK+ L-ARG. The systolic blood pressure (SBP) of 2K1C rats increased from 114.4±5.2 to 204±12.7 mm Hg (P<0.05) and was only reduced by ALSK+L-ARG treatment (138.4±4.37 mm Hg). The 2K1C hypertension increased the baseline RSNA (SHAM: 62.4±6.39 vs. 2K1C: 97.4±8.43%). L-ARG or ALSK+L-ARG treatment significantly decreased baseline RSNA (2K1C L-ARG:70.7±2.39; 2K1C ALSK+L-ARG: 69.3±4.23%), but ALSK treatment alone did not (2K1C ALSK: 84.2±2.5%). Urinary water, Na(+), Cl(-) and urea excretion were similar in the 2K1C L-ARG, 2K1C ALSK+L-ARG and SHAM groups. The combination of ALSK+L-ARG restored urine flow and increased the glomerular filtration rate. The nNOS expression in the non clipped kidney was significantly increased in 2K1C ALSK+L-ARG rats. In conclusion, combined ALSK+L-ARG treatment normalizes SBP and prevents renal dysfunction in 2K1C hypertensive rats.

    Topics: Amides; Animals; Antihypertensive Agents; Arginine; Blood Pressure; Chlorides; Fumarates; Glomerular Filtration Rate; Hypertension, Renovascular; Kidney; Male; Nitric Oxide Synthase; Rats; Rats, Wistar; Sodium; Sympathetic Nervous System; Urea; Water

2015
Aliskiren inhibits experimental venous thrombosis in two-kidney one- clip hypertensive rats.
    Thrombosis research, 2013, Volume: 131, Issue:1

    A substantial amount of evidence links the renin-angiotensin system with thrombosis. For example, ACE inhibitors and angiotensin receptor blockers possess independent of the hemodynamic changes, antithrombotic activity. Aliskiren direct renin inhibitor belongs to a new very promising antihypertensive drug that effectively inhibits the renin-angiotensin system. The aim of study was to determine the influence of aliskiren on stasis-induced venous thrombosis in renovascular hypertensive and normotensive rats. The involvement of nitric oxide and prostacyclin in the potential antithrombotic action was also elucidated. Six weeks after clipping of the left renal artery rats developed hypertension which was confirmed by the "tail cuff" method. Hypertensive and normotensive rats were treated with aliskiren (10, 30 and 100mg/kg/day) per os for 10days. Venous thrombosis was induced by stasis of vena cava inferior. Aliskiren at the highest dose induced a significant decrease in systolic blood pressure in hypertensive, but did not change this parameter in normotensive rats. Oral administration of aliskiren resulted in dose-dependent decrease of venous thrombus weight in hypertensive and normotensive rats. The antithrombotic activity of aliskiren was abolished both by NO synthase inhibitor and prostacyclin synthesis inhibitor. Aliskiren decreased collagen-induced platelet aggregation, increased plasma level of tissue plasminogen activator activity whereas no changes in plasminogen activator inhibitor activity and coagulation parameters were found. We showed that aliskiren prevents the development of venous thrombosis by enhanced fibrinolysis and the blood platelet inhibition via nitric oxide and/or prostacyclin-dependent mechanism.

    Topics: Administration, Oral; Amides; Animals; Biomarkers; Blood Platelets; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Epoprostenol; Fibrinolysis; Fibrinolytic Agents; Fumarates; Hypertension, Renovascular; Hypoglycemic Agents; Kidney; Ligation; Male; Nitric Oxide; Nitric Oxide Synthase; Plasminogen Activator Inhibitor 1; Platelet Activation; Rats; Rats, Wistar; Renal Artery; Tissue Plasminogen Activator; Venous Thrombosis

2013
Renin excess after renin inhibition: malefactor or innocent bystander?
    International journal of clinical practice, 2007, Volume: 61, Issue:9

    Topics: Amides; Fumarates; Hypertension, Renovascular; Renin

2007