aliskiren has been researched along with Fibrosis* in 29 studies
2 review(s) available for aliskiren and Fibrosis
Article | Year |
---|---|
The use of aliskiren as an antifibrotic drug in experimental models: A systematic review.
Aliskiren is an oral antihypertensive medication that acts by directly inhibiting renin. High levels of circulating renin and prorenin activate the pathological signaling pathway of fibrosis. This drug also reduces oxidative stress. Thus, the aim of this systematic review is to analyze experimental studies that show the actions of aliskiren on fibrosis. PubMed and LILACS databases were consulted using the keywords aliskiren and fibrosis within the period between 2005 and 2017. Fifty-three articles were analyzed. In the heart, aliskiren attenuated remodeling, hypertrophy, inflammatory cytokines, collagen deposition, and oxidative stress. In the kidneys, there was a reduction in interstitial fibrosis, the infiltration of inflammatory cells, apoptosis, proteinuria, and in the recruitment of macrophages. In diabetic models, an improvement in the albumin/creatinine relationship and in the insulin pathway in skeletal muscles was observed; aliskiren was beneficial to pancreatic function and glucose tolerance. In the liver, aliskiren reduced fibrosis, steatosis, inflammatory cytokines, and collagen deposition. In the lung and peritoneal tissues, there was a reduction in fibrosis. Many studies have reported on the beneficial effects of aliskiren on endothelial function and arterial rigidity. A reduction in fibrosis in different organs is cited by many authors, which complies with the results found in this review. However, studies diverge on the use of the drug in diabetic patients. Aliskiren has antifibrotic potential in several experimental models, interfering with the levels of fibrogenic cytokines and oxidative stress. Therefore, its use in diseases in which fibrosis plays an important pathophysiological role is suggested. Topics: Amides; Animals; Anti-Inflammatory Agents; Disease Models, Animal; Drug Repositioning; Endomyocardial Fibrosis; Fibrosis; Fumarates; Humans; Nephritis, Interstitial; Oxidative Stress | 2020 |
Targeting the renin-angiotensin-aldosterone system in fibrosis.
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well. Topics: Amides; Angiotensins; Animals; Benzimidazoles; Biphenyl Compounds; Extracellular Matrix; Extracellular Matrix Proteins; Fibroblasts; Fibrosis; Fumarates; Gene Expression Regulation; Humans; Kidney; Liver; Molecular Targeted Therapy; Myocardium; Pyridones; Renin-Angiotensin System; Signal Transduction; Skin; Tetrazoles; Transforming Growth Factor beta | 2020 |
1 trial(s) available for aliskiren and Fibrosis
Article | Year |
---|---|
Aliskiren and perindopril reduce the levels of transforming growth factor-β in patients with non-diabetic kidney disease.
It is highly likely that the rise in plasma prorenin and plasma renin during renin inhibitor treatment is induced at least as much by the fall in blood pressure (BP) as it is by the negative feedback of angiotensin II. This could potentially be harmful because high levels of renin and prorenin may stimulate the (pro)renin receptor, thus inducing profibrotic effects. To further understand this relationship, the influence of aliskiren on the urinary excretion of transforming growth factor-β1 (TGF-β1) and procollagen III N-terminal propeptide (PIIINP) was evaluated in patients with nondiabetic kidney diseases.. Aliskiren 300 mg and perindopril 10 mg, were each individually administered for 12 weeks separated by a placebo period in a cross-over, randomized, double-blinded pilot study.. A 1,131% (P < 0.001) and 628% (P < 0.001) increase in plasma renin concentration was observed after the aliskiren and perindopril therapies, respectively, as compared to the placebo. Aliskiren and perindopril increased prorenin concentrations as compared to the placebo by 100% (P < 0.01) and 52.4% (P = 0.53), respectively. The TGF-β1 excretion was lower after tested therapies compared to the placebo (55.0 ± 7.56 vs. 56.21 ± 8.56 vs. 85.79 ± 14.11 pg/mg creatinine; P = 0.016); without differences between aliskiren and perindopril. PIIINP excretion did not differ between treatments.. The study shows that both aliskiren and perindopril suppress TGF-β1 in patients with chronic kidney diseases. This effect was observed despite significant increases in the renin and prorenin concentrations. Further studies involving histological assessments are required to elucidate the exact impact of these agents on renal fibrosis. Topics: Adult; Amides; Antihypertensive Agents; Chronic Disease; Creatinine; Cross-Over Studies; Double-Blind Method; Female; Fibrosis; Fumarates; Humans; Kidney; Kidney Diseases; Male; Peptide Fragments; Perindopril; Pilot Projects; Procollagen; Renin; Transforming Growth Factor beta; Treatment Outcome | 2012 |
26 other study(ies) available for aliskiren and Fibrosis
Article | Year |
---|---|
Aliskiren improves renal morphophysiology and inflammation in Wistar rats with 2K1C renovascular hypertension.
Hypertension is characterized by persistent elevated blood pressure levels, one of the leading causes of death in the world. Renovascular hypertension represents the most common cause of secondary hypertension, and its progress is associated with overactivation of the renin angiotensin aldosterone system (RAAS), causing systemic and local changes. Aliskiren is a renin-inhibiting drug that optimizes RAAS suppression. In this sense, the objective of the present study was to analyze the morphophysiology of the left kidney in Wistar rats with renovascular hypertension after treatment with Aliskiren. Parameters such as systolic blood pressure, urinary creatinine and protein excretion, renal cortex structure and ultrastructure, fibrosis and tissue inflammation were analyzed. Our results showed that the hypertensive animals treated with Aliskiren presented a reestablishment of blood pressure, expression of renin, and renal function, as well as a remodeling of morphological alterations through the reduction of fibrosis. The treatment regulated the laminin expression and decreased pro-inflammatory cytokines, restoring the integrity of the glomerular filtration barrier. Therefore, our findings suggest that Aliskiren has a renoprotective effect acting on the improvement of the morphology, physiology and pathology of the renal cortex of animals with renovascular hypertension. Topics: Amides; Animals; Antihypertensive Agents; Disease Models, Animal; Fibrosis; Fumarates; Hypertension, Renovascular; Inflammation; Kidney; Rats; Renin-Angiotensin System | 2020 |
Aliskiren attenuates cardiac dysfunction by modulation of the mTOR and apoptosis pathways.
Aliskiren (ALS) is well known for its antihypertensive properties. However, the potential underlying the molecular mechanism and the anti-hypertrophic effect of ALS have not yet been fully elucidated. The aim of the present study was to investigate the role of ALS in mammalian target of rapamycin (mTOR) and apoptosis signaling using in vivo and in vitro models of cardiac hypertrophy. A rat model of cardiac hypertrophy was induced by isoproterenol treatment (5 mg·kg-1·day-1) for 4 weeks, with or without ALS treatment at 20 mg·kg-1·day-1. The expression of hypertrophic, fibrotic, and apoptotic markers was determined by RT-qPCR. The protein expression of apoptotic markers mTOR and p-mTOR was assessed by western blot analysis. The proliferation of H9C2 cells was monitored using the MTS assay. Cell apoptosis was analyzed using flow cytometry. In vivo, isoproterenol-treated rats exhibited worse cardiac function, whereas ALS treatment reversed these dysfunctions, which were associated with changes in p-mTOR, Bcl-2, Bax, and cleaved caspase-3 expression, as well as the number of apoptotic cells. In vitro, H9C2 cardiomyocyte viability was significantly inhibited and cardiac hypertrophy was induced by Ang II administration, but ALS reversed Ang II-induced H9C2 cardiomyocyte hypertrophy and death. Furthermore, Ang II triggered the activation of the mTOR and apoptosis pathways in hypertrophic cardiomyocytes that were inhibited by ALS treatment. These results indicated that ALS alleviated cardiac hypertrophy through inhibition of the mTOR and apoptosis pathways in cardiomyocytes. Topics: Amides; Angiotensin II; Animals; Apoptosis; Blotting, Western; Cardiomegaly; Disease Models, Animal; Fibrosis; Flow Cytometry; Fumarates; Isoproterenol; Male; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; TOR Serine-Threonine Kinases | 2020 |
Arterial wall hypertrophy is ameliorated by α2-adrenergic receptor antagonist or aliskiren in kidneys of angiotensinogen-knockout mice.
Arterial hypertrophy and interstitial fibrosis are important characteristics in kidneys of angiotensinogen-knockout (Atg. We performed renal denervation and administered the α2-adrenergic receptor (AR) antagonist, atipamezole, to Atg. Norepinephrine content in kidneys of Atg. Alpha2-AR signaling is one of the causes of persistent renal arterial hypertrophy in Atg Topics: Adrenergic alpha-2 Receptor Antagonists; Amides; Angiotensinogen; Animals; Fibrosis; Fumarates; Hypertrophy; Japan; Kidney; Mice; Mice, Inbred ICR; Mice, Knockout; Renal Artery; Renin; Tokyo; Transforming Growth Factor beta1 | 2018 |
Treatment combining aliskiren with paricalcitol is effective against progressive renal tubulointerstitial fibrosis via dual blockade of intrarenal renin.
The aim of this study was to assess any potential additive effects of a treatment combining aliskiren with paricalcitol on reducing renal fibrosis. C57BL/6J mice were treated individually with aliskiren and/or paricalcitol until 7 days after initiation of unilateral ureteral obstruction (UUO).In obstructed kidneys of UUO mice, monotherapy with aliskiren or paricalcitol significantly attenuated interstitial fibrosis, collagen IV accumulation, and α-smooth muscle actin- and terminal deoxynucleotidyl transferase-mediated biotin nick end-labeling-positive cells. The combination treatment showed additive efficacy in inhibition of these parameters. Renal NADPH oxidase (Nox)1 and Nox2 were significantly decreased by aliskiren or paricalcitol alone or in combination, while renal Nox4 expression was significantly reduced by paricalcitol mono- or combination treatment. Increased levels of p-Erk and p-p38 MAPK, and NF-κB in UUO kidneys were also significantly reduced by either aliskiren or paricalcitol treatment alone or in combination. Aliskiren or paricalcitol monotherapy significantly reduced the expression of (pro)renin receptor in UUO kidneys. In addition, aliskiren tended to augment renin expression in UUO kidneys, but paricalcitol reduced its expression level. The combination treatment effectively blocked both (pro)renin receptor and renin expression induced by aliskiren, and resulted in a further reduction of the renal expression of angiotensin II AT1 receptor. Aliskiren failed to increase the expression of vitamin D receptor in UUO kidneys, but the combination treatment restored its expression level. Taken together, a treatment combining aliskiren with paricalcitol better inhibits UUO-induced renal injury. The mechanism of this synergy may involve more profound inhibition of the intrarenal renin-angiotensin system. Topics: Amides; Animals; Apoptosis; Collagen Type IV; Disease Progression; Drug Therapy, Combination; Ergocalciferols; Fibrosis; Fumarates; Inflammation Mediators; Kidney; Kidney Diseases; Male; Mice, Inbred C57BL; Myofibroblasts; Oxidative Stress; Receptors, Calcitriol; Renin; Renin-Angiotensin System; Treatment Outcome; Ureteral Obstruction | 2017 |
Aliskiren suppresses atrial electrical and structural remodeling in a canine model of atrial fibrillation.
Aliskiren, a direct renin inhibitor is expected to achieve sufficient suppression of renin-angiotensin system. We evaluated the effect of aliskiren on the electrical and structural remodeling in a canine atrial fibrillation (AF) model. Twenty-eight dogs were divided into three groups: (1) pacing control group (n = 12), with continuous atrial rapid pacing for 3 or 6 weeks, (2) pacing + aliskiren group (n = 12), with oral aliskiren (30 mg/kg/day), and (3) sham group (n = 4), no pacing nor drug administration. Electrophysiological properties and AF inducibility were evaluated every week. After the protocol, the left atrial tissue was sampled for the further histological and mRNA analysis. The electrical remodeling, AF inducibility, the left atrial enlargement and interstitial fibrosis were observed in pacing control group and were more prominent in the 6-week protocol (vs. 3 week, p < 0.05). The mRNA expressions of matricellular proteins exhibited upregulation in 3-week pacing control, but these upregulations became insignificant in 6 weeks. In contrast, collagen type 3 exhibited significant upregulation in 6 week but not in 3-week protocol. These changes were suppressed in the pacing + aliskiren group. Aliskiren suppressed the atrial remodeling in a canine AF model. This effect was accompanied by the suppression of tissue fibrosis. Topics: Amides; Animals; Atrial Fibrillation; Cardiac Pacing, Artificial; Disease Models, Animal; Dogs; Echocardiography; Female; Fibrosis; Fumarates; Gene Expression; Heart Atria; Hemodynamics; Renin; Renin-Angiotensin System | 2017 |
Calcineurin-inhibition Results in Upregulation of Local Renin and Subsequent Vascular Endothelial Growth Factor Production in Renal Collecting Ducts.
Tacrolimus (Tac) and Cyclosporine A (CyA) calcineurin inhibitors (CNIs) are 2 effective immunosuppressants which are essential to prevent allograft rejection. Calcineurin inhibitors are known to be nephrotoxic. However, the precise mechanism of nephrotoxicity is not fully understood. In this study, we investigated the in vivo effects of CNIs on the local renal renin-angiotensin system in the collecting duct (CD).. Three-week-old mice were treated with either vehicle, CyA (2 mg/kg per day), Tac (0.075 mg/kg per day), CyA + Aliskiren (25 mg/kg per day), or Tac + Aliskiren for 3 weeks. Serum creatinine was measured. Renin and vascular endothelial growth factor (VEGF) contents in CD were evaluated with flow cytometry and multiphoton microscopy. The diameter of vessels was assessed with multiphoton microscopy, and the amount of renal collagen was determined by real-time polymerase chain reaction and Masson staining.. The elevated level of serum creatinine in CNI groups was abolished by Aliskiren. Flow cytometric analysis found elevated renin content in principal cells, which was prevented by Aliskiren. This result was further confirmed with multiphoton microscopy. The VEGF content in CD correlated with reduced capillary diameter and with the formation of fibrotic islands.. Calcineurin inhibitors induce production of renin in the CD that may contribute to decreased renal blood flow. In turn, CD responds with increased VEGF production, resulting in disproportional vessel growth, further worsening the local hypoxia and striped fibrosis surrounding the CDs. Aliskiren, a direct renin inhibitor blocks these effects and improves CNI-induced nephropathy by decreasing renin production in the CDs. Our data suggest that Aliskiren may be used for the prevention of CNI nephrotoxicity. Topics: Amides; Animals; Biomarkers; Calcineurin Inhibitors; Capillaries; Collagen Type I; Creatinine; Cyclosporine; Cytoprotection; Disease Models, Animal; Fibrosis; Flow Cytometry; Fumarates; Immunosuppressive Agents; Kidney Diseases; Kidney Tubules, Collecting; Male; Mice, Inbred C57BL; Microscopy, Fluorescence, Multiphoton; Real-Time Polymerase Chain Reaction; Renal Circulation; Renin; Renin-Angiotensin System; Tacrolimus; Time Factors; Up-Regulation; Vascular Endothelial Growth Factor A | 2016 |
Concomitant inhibition of renin angiotensin system and Toll-like receptor 2 attenuates renal injury in unilateral ureteral obstructed mice.
There has been controversy about the role of Toll-like receptor 2 (TLR2) in renal injury following ureteric obstruction. Although inhibition of the renin angiotensin system (RAS) reduces TLR2 expression in mice, the exact relationship between TLR2 and RAS is not known. The aim of this study was to determine whether the RAS modulates TLR2.. We used 8-week-old male wild type (WT) and TLR2-knockout (KO) mice on a C57Bl/6 background. Unilateral ureteral obstruction (UUO) was induced by complete ligation of the left ureter. Angiotensin (Ang) II (1,000 ng/kg/min) and the direct renin inhibitor aliskiren (25 mg/kg/day) were administrated to mice using an osmotic minipump. Molecular and histologic evaluations were performed.. Ang II infusion increased mRNA expression of TLR2 in WT mouse kidneys (p < 0.05). The expression of renin mRNA in TLR2-KO UUO kidneys was significantly higher than that in WT UUO kidneys (p < 0.05). There were no differences in tissue injury score or mRNA expression of monocyte chemotactic protein 1 (MCP-1), osteopontin (OPN), or transforming growth factor β (TGF-β) between TLR2-KO UUO and WT UUO kidneys. However, aliskiren decreased the tissue injury score and mRNA expression of TLR2, MCP-1, OPN, and TGF-β in WT UUO kidneys (p < 0.05). Aliskiren-treated TLR2-KO UUO kidneys showed less kidney injury than aliskiren-treated WT UUO kidneys.. TLR2 deletion induced activation of the RAS in UUO kidneys. Moreover, inhibition of both RAS and TLR2 had an additive ameliorative effect on UUO injury of the kidney. Topics: Amides; Angiotensin II; Animals; Disease Models, Animal; Fibrosis; Fumarates; Kidney; Male; Mice, Inbred C57BL; Mice, Knockout; Nephritis, Interstitial; Renin; Renin-Angiotensin System; RNA, Messenger; Toll-Like Receptor 2; Ureteral Obstruction | 2016 |
Aliskiren protecting atrial structural remodeling from rapid atrial pacing in a canine model.
Atrial fibrillation (AF) contributing to the increasing mortality risk is the most common disease in clinical practice. Owing to the side effects and relative inefficacy of current antiarrhythmic drugs, some research focuses on renin-angiotensin-aldosterone system (RAS) for finding out the new treatment of AF. The purpose of this study is to confirm whether aliskiren as a proximal inhibitor of renin, which completely inhibits RAS, has beneficial effects on atrial structural remodeling in AF. In this study, rapid atrial pacing was induced at 500 beats per minute for 2 weeks in a canine model. A different dose of aliskiren was given orally for 2 weeks before rapid atrial pacing. HE staining and Masson's staining were used for analysis of myocardial fibrosis. TGF-β1, signal pathways, and pro-inflammatory cytokines were shown for the mechanism of structural remodeling after the treatment of aliskiren. Serious atrial fibrosis was induced by rapid atrial pacing, followed by the elevated TGF-β1, upregulated MEK and ERK1/2, and increased inflammatory factors. Aliskiren could apparently improve myocardial fibrosis by reducing the expression of TGF-β1, inhibiting MEK and ERK1/2 signal pathways, and decreasing IL-18 and TLR4 in both serum and atrial tissue. In conclusion, aliskiren could prevent atrial structural remodeling from rapid atrial pacing for 2 weeks. Aliskiren may play a potential beneficial role in the treatment of AF induced by rapid atrial pacing. Topics: Action Potentials; Amides; Animals; Anti-Arrhythmia Agents; Atrial Fibrillation; Atrial Remodeling; Cardiac Pacing, Artificial; Cytokines; Disease Models, Animal; Dogs; Extracellular Signal-Regulated MAP Kinases; Female; Fibrosis; Fumarates; Heart Atria; Heart Rate; Inflammation Mediators; Male; MAP Kinase Kinase 1; Renin; Signal Transduction; Transforming Growth Factor beta1 | 2016 |
Spironolactone enhances the beneficial effect of aliskiren on cardiac structural and electrical remodeling in TGR(mRen2)27 rats.
To investigate the influence of simultaneous administration of spironolactone (20 mg/kg per day, intraperitoneal (i.p.)) and aliskiren (50 mg/kg per day, i.p.) for a period of eight weeks on cardiac remodeling in TGR(mRen2)27 rats.. Echocardiographic and electrophysiological and histological methods were used to determine the influence of spironolactone and aliskiren on cardiac remodeling.. 1) the beneficial effect of aliskiren on SBP was enhanced by simultaneous administration of spironolactone; 2) echocardiographic studies showed that the left ventricle diameter (LVD), the left ventricle end diastolic volume (LVEDV) and the left ventricle posterior wall thickness (LVPW) were significantly reduced by the combination of both drugs when compared with aliskiren alone; 3) the ejection fraction was also increased; 4) histological studies indicated a greater decline in perivascular and interstitial fibrosis when both drugs were used; 5) the decrease of electrical remodeling of the left ventricle caused by aliskiren was further reduced by simultaneous administration of spironolactone; 6) the cardiac refractoriness increased by aliskiren was further incremented by spironolactone. Spironolactone (20 mg/kg per day) alone increased the ejection fraction and reduced LVD, LVEDV and LVPW but its effect was smaller than that achieved with the combination spironolactone plus aliskiren.. The combination of an aldosterone inhibitor with a direct renin inhibitor proved to be of greater benefit for cardiac structural and electrical remodeling in this experimental model of hypertension than aliskiren alone. Topics: Amides; Animals; Blood Pressure; Coronary Vessels; Echocardiography; Fibrosis; Fumarates; Heart; Heart Conduction System; Injections, Intraperitoneal; Male; Rats, Transgenic; Renin; Rest; Spironolactone; Systole; Ventricular Remodeling | 2015 |
Profibrosing effect of angiotensin converting enzyme inhibitors in human lung fibroblasts.
The objective of this study is to determine the effect of two angiotensin-converting enzyme inhibitors (ACEi) (Enalapril and Captopril), an angiotensin-II receptor inhibitor (Losartan) and a renin inhibitor (Aliskiren) on renin, TGF-β1 and collagen expressions in human lung fibroblast cultures through real-time PCR and ELISA.. Normal commercial fibroblasts (CCD25) were exposed to 10(-6) M of enalapril, captopril, losartan, or aliskiren for 6 h. Subsequently, media were recovered and proteins were concentrated; RNA was extracted from the cells. Real time-PCR and ELISA were performed.. ACEi and losartan-stimulated fibroblasts showed an increase in the expression of TGF-β1, Collagen-Iα1 (Col-Iα1), and renin (except losartan) vs PolR2A (p < 0.05), and upregulation of TGF-β1 protein (p < 0.01), except with aliskiren.. Results show that ACEis and losartan could play a profibrosing role by inducing the overexpression of molecules such TGF-β1 and Collagen. Topics: Amides; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Captopril; Cells, Cultured; Collagen Type I; Collagen Type I, alpha 1 Chain; Enalapril; Fibroblasts; Fibrosis; Fumarates; Humans; Losartan; Lung; Protein Biosynthesis; Renin; Transcription, Genetic; Transforming Growth Factor beta1 | 2015 |
Renoprotective effects of the direct renin inhibitor aliskiren on gentamicin-induced nephrotoxicity in rats.
This study aimed to examine the protective effects of aliskiren on gentamicin-induced nephropathy. Rats were injected with gentamicin (100 mg/kg per day) for 14 days. Aliskiren was infused for two weeks. Human proximal tubular epithelial cell lines (HK-2) were cultured with gentamicin in the absence or presence of aliskiren. Inflammatory profibrotic and apoptotic markers were evaluated in vivo and in vitro. Aliskiren treatment attenuated the decreased creatinine clearance, increased fractional sodium excretion, glomerulosclerosis and tubulointerstitial fibrosis and counteracted the increased ED-1 expression in gentamicin-treated rats. The levels of inflammatory cytokines (TNF-α, IL-1β and IFN-γ) and adhesion molecules (MCP-1, ICAM-1 and VCAM-1) increased in the gentamicin-treated kidneys. These changes were restored by aliskiren co-treatment. Aliskiren effectively reversed transforming growth factor-β-induced fibrotic responses such as induction of α-smooth muscle actin in gentamicin-treated rat kidneys. Along with these changes, aliskiren also attenuated the increase in nuclear factor κB and phosphorylated extracellular signal-regulated kinase (pERK 1/2) levels in HK-2 cells cultured with gentamicin. In addition, aliskiren decreased the number of TUNEL-positive nuclei and reduced the expression of proapoptotic markers in gentamicin-treated HK-2 cells. These findings suggest that aliskiren attenuates gentamicin-induced nephropathy by suppression of inflammatory, profibrotic and apoptotic factors through inhibition of the nuclear factor κB, Smads and mitogen-activated protein kinase signaling pathways. Topics: Amides; Animals; Apoptosis; bcl-2-Associated X Protein; Cell Adhesion Molecules; Cytokines; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Fumarates; Gentamicins; Humans; Immunoblotting; Inflammation Mediators; Kidney; Kidney Diseases; Kidney Function Tests; Kidney Tubules; Male; NF-kappa B; Protective Agents; Proton-Translocating ATPases; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Receptors, Cell Surface; Renin; Smad Proteins; Transforming Growth Factor beta1; Vacuolar Proton-Translocating ATPases | 2014 |
The synergistic effect of mizoribine and a direct renin inhibitor, aliskiren, on unilateral ureteral obstruction induced renal fibrosis in rats.
Renal fibrosis, the major histopathological change in various renal disorders, is closely related to renal dysfunction. Unilateral ureteral obstruction is a well established model of experimental renal disease that results in tubulointerstitial fibrosis. Previous studies showed that aliskiren and mizoribine ameliorated unilateral ureteral obstruction induced renal fibrosis. However, to our knowledge the protective effect of combination therapy with aliskiren and mizoribine against renal fibrosis is unknown. We investigated the synergistic effects of aliskiren and mizoribine combination therapy on unilateral ureteral obstruction induced fibrosis in rats.. Male Sprague Dawley® rats underwent unilateral ureteral obstruction followed by aliskiren and/or mizoribine treatment. Kidney samples were fixed for histopathology and immunohistochemistry of myofibroblasts (α-SMA) and macrophages (ED-1). Real-time quantitative reverse transcription-polymerase chain reaction was performed to measure α-SMA, TGF-β1, osteopontin, MCP-1 and renin expression.. After unilateral ureteral obstruction the tubular dilatation, interstitial volume and α-SMA expression scores were significantly decreased by combination therapy compared with monotherapy with aliskiren or mizoribine. Combination therapy caused a significant decrease in the number of ED-1 positive cells and in TGF-β1 gene expression compared with monotherapy with either drug (each p <0.05). Combination therapy also decreased OPN and MCP-1 gene expression (p <0.05).. Aliskiren and mizoribine combination therapy provides increased renal protection against renal fibrosis and unilateral ureteral obstruction induced inflammation. Topics: Amides; Animals; Drug Synergism; Drug Therapy, Combination; Fibrosis; Fumarates; Kidney; Male; Rats; Rats, Sprague-Dawley; Renin; Ribonucleosides; Transforming Growth Factor beta1; Ureteral Obstruction | 2014 |
Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice.
Aliskiren (ALK) is a renin inhibitor that has been used in the treatment of hypertension. The aim of this study was to determine whether ALK could ameliorate pressure overload-induced heart hypertrophy and fibrosis, and to elucidate the mechanisms of action.. Transverse aortic constriction (TAC) was performed in mice to induce heart pressure overload. ALK (150 mg·kg(-1)·d(-1), po), the autophagy inhibitor 3-methyladenine (10 mg·kg(-1) per week, ip) or the PKCβI inhibitor LY333531 (1 mg·kg(-1)·d-(1), po) was administered to the mice for 4 weeks. Heart hypertrophy, fibrosis and function were evaluated based on echocardiography, histological and biochemical measurements. Mechanically stretched cardiomyocytes of rats were used for in vitro experiments. The levels of signaling proteins were measured using Western blotting, while the expression of the relevant genes was analyzed using real-time QRT-PCR.. TAC induced marked heart hypertrophy and fibrosis, accompanied by high levels of Ang II in plasma and heart, and by PKCβI/α and ERK1/2 phosphorylation in heart. Meanwhile, TAC induced autophagic responses in heart, i.e. increases in autophagic structures, expression of Atg5 and Atg16 L1 mRNAs and LC3-II and Beclin-1 proteins. These pathological alterations in TAC-mice were significantly ameliorated or blocked by ALK administration. In TAC-mice, 3-methyladenine administration also ameliorated heart hypertrophy, fibrosis and dysfunction, while LY333531 administration inhibited ERK phosphorylation and autophagy in heart. In mechanically stretched cardiomyocytes, CGP53353 (a PKCβI inhibitor) prevented ERK phosphorylation and autophagic responses, while U0126 (an ERK inhibitor) blocked autophagic responses.. ALK ameliorates heart hypertrophy, fibrosis and dysfunction in the mouse model in setting of chronic pressure overload, via suppressing Ang II-PKCβI-ERK1/2-regulated autophagy. Topics: Amides; Animals; Antihypertensive Agents; Autophagy; Cardiomegaly; Cells, Cultured; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Fumarates; Heart; Male; Mice; Mice, Inbred C57BL; Myocardium; Myocytes, Cardiac; Phosphorylation; Protein Kinase C; Rats; Rats, Sprague-Dawley; Stress, Mechanical | 2014 |
Renin inhibition reverses renal disease in transgenic mice by shifting the balance between profibrotic and antifibrotic agents.
Aliskiren, a direct renin inhibitor, is a novel antihypertensive drug. To study whether aliskiren can reverse chronic kidney disease, we administered it to renin transgenic mice, a strain characterized by elevated blood pressure and a slow decline of renal function, mimicking well the progression of hypertensive chronic kidney disease. Ten-month-old transgenic mice were treated either with aliskiren or placebo for 28 days. Age-matched wild-type mice treated or not with aliskiren were considered as normotensive controls. Aliskiren reduced blood pressure to wild-type levels from as early as day 14. Proteinuria and cardiac hypertrophy and fibrosis were also normalized. Renal interstitial fibrosis and inflammation were significantly ameliorated in aliskiren-treated mice (shown by the decrease of proinflammatory and profibrotic markers), and the phenotypes of tubular epithelial cells and podocytes were restored as evidenced by the reappearance of cellular proteins characteristic of normal phenotype of these cells. Profibrotic p38 and Erk mitogen-activated protein kinases were highly activated in placebo-treated transgenic animals. Aliskiren treatment cancelled this activation. This nephroprotection was not attributed to the antihypertensive activity of aliskiren, because blood pressure normalization after treatment with hydralazine failed to induce the regression of renal fibrosis. Direct inhibition of renin can restore renal function and structure in aged hypertensive animals with existing proteinuria. This finding suggests that, in addition to antihypertensive action, aliskiren can be also used to treat chronic kidney disease. Topics: Amides; Animals; Disease Models, Animal; Fibrosis; Fumarates; Hypertension; Kidney; Kidney Diseases; Mice; Mice, Transgenic; Renin | 2013 |
Effects of direct Renin inhibition on myocardial fibrosis and cardiac fibroblast function.
Myocardial fibrosis, a major pathophysiologic substrate of heart failure with preserved ejection fraction (HFPEF), is modulated by multiple pathways including the renin-angiotensin system. Direct renin inhibition is a promising anti-fibrotic therapy since it attenuates the pro-fibrotic effects of renin in addition to that of other effectors of the renin-angiotensin cascade. Here we show that the oral renin inhibitor aliskiren has direct effects on collagen metabolism in cardiac fibroblasts and prevented myocardial collagen deposition in a non-hypertrophic mouse model of myocardial fibrosis. Adult mice were fed hyperhomocysteinemia-inducing diet to induce myocardial fibrosis and treated concomitantly with either vehicle or aliskiren for 12 weeks. Blood pressure and plasma angiotensin II levels were normal in control and hyperhomocysteinemic mice and reduced to levels lower than observed in the control group in the groups treated with aliskiren. Homocysteine-induced myocardial matrix gene expression and fibrosis were also prevented by aliskiren. In vitro studies using adult rat cardiac fibroblasts also showed that aliskiren attenuated the pro-fibrotic pattern of matrix gene and protein expression induced by D,L, homocysteine. Both in vivo and in vitro studies demonstrated that the Akt pathway was activated by homocysteine, and that treatment with aliskiren attenuated Akt activation. In conclusion, aliskiren as mono-therapy has potent and direct effects on myocardial matrix turnover and beneficial effects on diastolic function. Topics: Amides; Angiotensin II; Animals; Antihypertensive Agents; Cardiomyopathies; Collagen; Diet; Extracellular Matrix; Fibroblasts; Fibrosis; Fumarates; Homocysteine; Mice; Myocardium; Proto-Oncogene Proteins c-akt; Renin; Renin-Angiotensin System; Signal Transduction | 2013 |
Reduction of aldosterone production improves renal oxidative stress and fibrosis in diabetic rats.
Aldosterone is increased in diabetes and contributes to the development of diabetic nephropathy. The authors hypothesized that reduction in aldosterone production in diabetes by amlodipine or aliskiren improves diabetic kidney disease by attenuating renal oxidative stress and fibrosis. Normoglycemic and streptozotocin-induced diabetic Sprague-Dawley rats were given vehicle, amlodipine, or aliskiren alone and combined for 6 weeks. At the end of study, we evaluated blood pressure (BP), 24-hour urinary sodium (UNaV) and aldosterone excretion rates, renal interstitial fluid (RIF) levels of nitric oxide (NO), cyclic guanosine 3',5'-monophosphate (cGMP), and 8-isoprostane, and renal morphology. BP was not significantly different between any of experimental groups. UNaV increased in diabetic animals and was not affected by different treatments. Urinary aldosterone excretion increased in diabetic rats receiving vehicle and decreased with amlodipine and aliskiren alone or combined. RIF NO and cGMP levels were reduced in vehicle-treated diabetic rats and increased with amlodipine or aliskiren given alone and combined. RIF 8-isoprostane levels and renal immunostaining for periodic acid-Schiff and fibronectin were increased in vehicle-treated diabetic rats and decreased with aliskiren alone or combined with amlodipine. The authors conclude that inhibition of aldosterone by amlodipine or aliskiren ameliorates diabetes induced renal injury via improvement of NO-cGMP pathway and reduction in oxidative stress and fibrosis, independent of BP changes. Topics: Aldosterone; Amides; Amlodipine; Animals; Antihypertensive Agents; Blood Glucose; Blood Pressure; Cyclic GMP; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Dinoprost; Down-Regulation; Fibronectins; Fibrosis; Fumarates; Immunohistochemistry; Kidney; Male; Natriuresis; Nitric Oxide; Oxidative Stress; Rats; Rats, Sprague-Dawley; Time Factors | 2013 |
Aliskiren, at low doses, reduces the electrical remodeling in the heart of the TGR(mRen2)27 rat independently of blood pressure.
The influence of chronic administration of low doses of aliskiren (5 mg/kg/day, i.p.) for a period of eight weeks on cardiac electrophysiological and structural remodeling was investigated in transgenic (TGR)(mRen-2)27 rats. Cardiac and plasma angiotensin II (Ang II) levels were determined by ELISA before and after administration of the drug. Moreover, histological, electrophysiological and echocardiographic studies were performed in controls and at the end of eight weeks of aliskiren administration.. 1) The cardiac Ang II levels were significantly reduced while the plasma Ang II levels were not significantly decreased in rats treated with low doses of aliskiren; 2) echocardographic studies showed a decrease of left ventricle diameter (LVD), left ventricle posterior wall thickness (LVPW), left ventricle end diastolic volume (LVEDV) and increased ejection fraction (EF); 3) aliskiren improved the impulse propagation, increased the cardiac refractoriness and reduced the incidence of triggered activity; 4) perivascular and interstitial fibrosis were greatly reduced, which explains the increase in conduction velocity. All these effects of aliskiren were found independently of blood pressure, suggesting that the beneficial effect of aliskiren was related to an inhibition of the local cardiac renin angiotensin system; and 5) the effect of mechanical stretch on action potential duration, conduction velocity and spontaneous rhythmicity was changed by aliskiren, supporting the hypothesis presented here that the beneficial effect of the drug on cardiac remodeling is related to a decreased sensitivity of cardiac muscle to mechanical stress. Topics: Action Potentials; Amides; Animals; Blood Pressure; Dose-Response Relationship, Drug; Electrocardiography; Electrophysiological Phenomena; Fibrosis; Fumarates; Heart; Heart Ventricles; Male; Myocardium; Rats; Rats, Transgenic; Receptor, Angiotensin, Type 1; Stress, Mechanical; Systole; Ventricular Remodeling | 2013 |
Renin inhibition and AT(1)R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling.
Strategies that block angiotensin II actions on its angiotensin type 1 receptor or inhibit actions of aldosterone have been shown to reduce myocardial hypertrophy and interstitial fibrosis in states of insulin resistance. Thereby, we sought to determine if combination of direct renin inhibition with angiotensin type 1 receptor blockade in vivo, through greater reductions in systolic blood pressure (SBP) and aldosterone would attenuate left ventricular hypertrophy and interstitial fibrosis to a greater extent than either intervention alone.. We utilized the transgenic Ren2 rat which manifests increased tissue expression of murine renin which, in turn, results in increased renin-angiotensin system activity, aldosterone secretion and insulin resistance. Ren2 rats were treated with aliskiren, valsartan, the combination (aliskiren+valsartan), or vehicle for 21 days.. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic blood pressure, elevated serum aldosterone levels, cardiac tissue hypertrophy, interstitial fibrosis and ultrastructural remodeling. These biochemical and functional alterations were accompanied by increases in the NADPH oxidase subunit Nox2 and 3-nitrotyrosine content along with increases in mammalian target of rapamycin and reductions in protein kinase B phosphorylation. Combination therapy contributed to greater reductions in systolic blood pressure and serum aldosterone but did not result in greater improvement in metabolic signaling or markers of oxidative stress, fibrosis or hypertrophy beyond either intervention alone.. Thereby, our data suggest that the greater impact of combination therapy on reductions in aldosterone does not translate into greater reductions in myocardial fibrosis or hypertrophy in this transgenic model of tissue renin overexpression. Topics: Aldosterone; Amides; Angiotensin II Type 1 Receptor Blockers; Animals; Blood Pressure; Cell Size; Drug Interactions; Fibrosis; Fumarates; Mice; Myocardium; Myocytes, Cardiac; Oxidative Stress; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Receptor, Angiotensin, Type 1; Renin; Signal Transduction; Tetrazoles; Valine; Valsartan; Ventricular Remodeling | 2013 |
Aliskiren reduced renal fibrosis in mice with chronic ischemic kidney injury--beyond the direct renin inhibition.
Chronic renal ischemia leads to renal fibrosis and atrophy. Activation of the renin-angiotensin-aldosterone system is one of the main mechanisms driving chronic renal ischemic injury. The aim of the present study was to define the effect of aliskiren in chronic ischemia of the kidney. Two-kidney, one-clip mice were used to study chronic renal ischemia. Aliskiren significantly lowered the blood pressure in mice with renal artery constriction (92.1±1.1 vs. 81.0±1.8 mm Hg, P<0.05). Renin expression was significantly increased in ischemic kidneys when treated with aliskiren. In addition, (Pro)renin receptor expression was decreased by aliskiren in ischemic kidneys. Aliskiren treatment significantly increased klotho expression and reduced the expression of fibrogenic cystokines, caspase-3 and Bax in ischemic kidneys. Histological examination revealed that aliskiren significantly reduced the nephrosclerosis score (4.5±1.9 vs. 7.3±0.4, P<0.05). Immunofluorescence staining also showed that aliskiren decreased the deposition of interstitial collagen I in ischemic kidneys. In conclusion, direct renin inhibition significantly reduced renal fibrosis and apoptosis following chronic renal ischemia. Topics: Amides; Animals; Antihypertensive Agents; Caspase 3; Collagen Type I; Disease Models, Animal; Female; Fibrosis; Fumarates; Glucuronidase; Ischemia; Kidney; Kidney Failure, Chronic; Klotho Proteins; Mice; Mice, Inbred Strains; Renal Artery; Renin; Surgical Instruments | 2012 |
Aliskiren prevents the toxic effects of peritoneal dialysis fluids during chronic dialysis in rats.
The benefits of long-term peritoneal dialysis (PD) in patients with end-stage renal failure are short-lived due to structural and functional changes in the peritoneal membrane. In this report, we provide evidence for the in vitro and in vivo participation of the renin-angiotensin-aldosterone system (RAAS) in the signaling pathway leading to peritoneal fibrosis during PD. Exposure to high-glucose PD fluids (PDFs) increases damage and fibrosis markers in both isolated rat peritoneal mesothelial cells and in the peritoneum of rats after chronic dialysis. In both cases, the addition of the RAAS inhibitor aliskiren markedly improved damage and fibrosis markers, and prevented functional modifications in the peritoneal transport, as measured by the peritoneal equilibrium test. These data suggest that inhibition of the RAAS may be a novel way to improve the efficacy of PD by preventing inflammation and fibrosis following peritoneal exposure to high-glucose PDFs. Topics: Amides; Animals; Biological Transport; Biomarkers; Cytoprotection; Dose-Response Relationship, Drug; Epithelial Cells; Fibrosis; Fumarates; Glucose; Inflammation; Male; Peritoneal Dialysis; Peritoneum; Rats; Rats, Sprague-Dawley; Renin-Angiotensin System; Time Factors | 2012 |
Beneficial effects of pioglitazone against cardiovascular injury are enhanced by combination with aliskiren in a rat model of diabetic nephropathy.
Aliskiren is the first in a new class of orally active direct renin inhibitors, approved for the treatment of hypertension. However, the efficacy of aliskiren in diabetic cardiovascular complications remains to be defined. This study aimed to test the hypothesis that aliskiren may enhance the beneficial effects of pioglitazone against cardiovascular injury associated with diabetic nephropathy.. Diabetic nephropathy was induced in rats by unilateral nephrectomy followed by streptozotocin injection. Diabetic nephropathic rats were orally given vehicle, pioglitazone, aliskiren, or combined pioglitazone and aliskiren for four weeks to compare their effects on cardiovascular injury, particularly myocardial fibrosis.. Pioglitazone treatment significantly attenuated cardiac lipid peroxidation, oxidative injury and myocardial fibrosis in diabetic nephropathic rats. This was associated with up-regulation of transforming growth factor-β1 and matrix metalloproteinase-2 genes, along with down-regulation of tissue inhibitor of metalloproteinase-2 gene in cardiac tissue. The combination of aliskiren with pioglitazone exerted greater beneficial effect than monotherapy with either drug, on all the aforementioned parameters.. Our findings suggested that aliskiren enhanced the protective effects of pioglitazone against myocardial fibrosis, in experimental diabetic nephropathy. Thus, the combination of aliskiren and pioglitazone may be a potential therapeutic strategy for cardiovascular injury associated with diabetic nephropathy. Topics: Amides; Animals; Antihypertensive Agents; Cardiomyopathies; Diabetic Nephropathies; Disease Models, Animal; Drug Therapy, Combination; Fibrosis; Fumarates; Gene Expression Regulation; Hypoglycemic Agents; Lipid Peroxidation; Male; Matrix Metalloproteinase 2; Myocardium; Nephrectomy; Oxidative Stress; Pioglitazone; Rats; Rats, Wistar; Streptozocin; Thiazolidinediones; Tissue Inhibitor of Metalloproteinase-2; Transforming Growth Factor beta1 | 2012 |
Anti-fibrotic effect of Aliskiren in rats with deoxycorticosterone induced myocardial fibrosis and its potential mechanism.
The objective of our study was to investigate the effect of Aliskiren, a renin inhibitor, on the deoxycorticosterone (DOCA) induced myocardial fibrosis in a rat model and its underlying mechanism. A total of 45 Sprague-Dawley (SD) rats underwent right nephrectomy and were randomly assigned into 3 groups: control group (CON group: silicone tube was embedded subcutaneously); DOCA treated group (DOC group: 200 mg of DOCA was subcutaneously administered); DOCA and Aliskiren (ALI) treated group (ALI group: 200 mg of DOCA and 50 mg/kg/d ALI were subcutaneously and intragastrically given, respectively). Treatment was done for 4 weeks. Sirius red staining was employed to detect the expression of myocardial collagen, and the myocardial collagen volume fraction (CVF) and perivascular collagen volume area (PVCA) were calculated. Radioimmunoassay was carried out to measure the renin activity (RA) and content of angiotensin II (Ang II) in the plasma and ventricle. Western blot assay was done to detect the expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (PERK1/2) and matrix metalloproteinase 9 (MMP-9). In the DOC group and ALI group, the CVF and PVCA were significantly increased; the RA and Ang II levels in the plasma and ventricle were remarkably lowered when compared with the CON group. The RA and Ang II levels in the ventricle of the ALI group were significantly lower than those in the DOC group. Moreover, the expressions of ERK1/2, PERK1/2 and MMP9 were the lowest in the CON group, but those in the ALI group were significantly reduced as compared to the DOC group. ALI can inhibit the DOCA induced myocardial fibrosis independent of its pressure-lowing effect, which may be related to the suppression of RA and Ang II production, inhibition of ERK1/2 phosphorylation and MMP9 expression in the heart. Topics: Amides; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Blotting, Western; Cardiomyopathies; Cardiotonic Agents; Collagen; Desoxycorticosterone; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Fumarates; Heart Ventricles; Indicators and Reagents; Male; Matrix Metalloproteinase 9; Myocardium; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Renin | 2012 |
Renal protective effects of aliskiren beyond its antihypertensive property in a mouse model of progressive fibrosis.
The direct renin inhibitor aliskiren is known to exhibit a strong antihypertensive effect. However, the organoprotective potential of aliskiren beyond its antihypertensive properties is less clear. This study investigates the antifibrotic nephroprotective effects of aliskiren in a nonhypertensive mouse model for progressive renal fibrosis.. COL4A3(-/-) mice received aliskiren via osmotic minipumps. Placebo-treated animals served as controls. Therapy was initiated in 6-week-old animals already showing renal damage (proteinuria ~1 g/l, starting renal fibrosis) and lasted for 4 weeks. Six animals were sacrificed after 9.5 weeks; serum urea and proteinuria were measured. Kidneys were further investigated using histological, immunohistological, and western blot techniques. Survival until end-stage renal failure was monitored in the remaining animals.. COL4A3(-/-) mice did not develop hypertension. Aliskiren serum levels were in the therapeutic range (288 ± 44 ng/ml). Therapy significantly prolonged lifespan until death from renal failure by 18% compared with placebo-treated controls (78.6 ± 8.2 vs. 66.6 ± 4.9 days, P < 0.05). Similarly, therapy reduced the amount of proteinuria and serum urea. Compared with placebo-treated controls, the accumulation of extracellular matrix and renal scarring and the levels of transforming growth factor-β (TGFβ) and connective tissue growth factor (CTGF) were decreased in treated mice.. Despite the late onset of therapy, our results indicate nephroprotective effects of the renin inhibitor aliskiren beyond its antihypertensive property in this animal model of progressive renal fibrosis. In addition to the recognized antihypertensive action of aliskiren, its antifibrotic, antiproteinuric effects demonstrated in the present study indicate that aliskiren may have potential as an important therapeutic option for chronic fibrotic diseases in humans. Topics: Amides; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Autoantigens; Collagen Type IV; Connective Tissue Growth Factor; Disease Models, Animal; Extracellular Matrix; Fibrosis; Fumarates; Kidney; Mice; Proteinuria; Transforming Growth Factor beta1; Uremia | 2011 |
Aliskiren ameliorates renal inflammation and fibrosis induced by unilateral ureteral obstruction in mice.
Renin-angiotensin system activation is involved in inflammation and fibrosis in the kidney. Aliskiren, a direct renin inhibitor, decreases renin-angiotensin system activation, including plasma renin activity and angiotensin II, but increases the prorenin level, which may promote inflammation and fibrosis in renal tissue. Thus, we evaluated whether inhibiting the renin-angiotensin system by aliskiren would decrease renal inflammation and fibrosis in a mouse model of unilateral ureteral obstruction.. Ten-week-old male C57BL/6 mice (Samtako, Kyoung Gi-Do, Korea) weighing 30 to 33 gm were divided into 4 groups, including vehicle or aliskiren treated sham operated and vehicle or aliskiren treated unilateral ureteral obstruction groups. We evaluated plasma renin activity, and plasma renin and renal mRNA expression levels of renin and (pro)renin receptor. To evaluate inflammation and fibrosis renal mRNA expression of monocyte chemotactic protein-1, osteopontin and transforming growth factor-β was measured. Hematoxylin and eosin, Masson's trichrome staining, and immunohistochemical staining for CD68, transforming growth factor-β and α-smooth muscle actin were performed.. Plasma renin activity was significantly lower in the aliskiren treated obstruction group than in the vehicle treated obstruction group. Aliskiren treatment increased renal mRNA expression of renin. The number of CD68 positive cells, and renal monocyte chemotactic protein-1 and osteopontin mRNA levels were significantly higher in mice with unilateral ureteral obstruction than in sham operated mice. Aliskiren decreased the increased levels of these inflammation markers. Aliskiren also decreased renal transforming growth factor-β mRNA expression, transforming growth factor-β and α-smooth muscle actin immunostaining, and Masson's trichrome stained areas of unilateral ureteral obstruction kidneys.. Aliskiren has anti-inflammatory and antifibrotic effects in an experimental unilateral ureteral obstruction mouse model. Topics: Amides; Animals; Fibrosis; Fumarates; Kidney; Male; Mice; Mice, Inbred C57BL; Nephritis; Renin; Ureteral Obstruction | 2011 |
A reduction of unilateral ureteral obstruction-induced renal fibrosis by a therapy combining valsartan with aliskiren.
The protective effect of combination therapy with valsartan and aliskiren against renal fibrosis remains to be defined. This study was undertaken to examine the protective effects of the combination of valsartan and aliskiren against renal fibrosis induced by unilateral ureteral obstruction (UUO). Combination therapy with valsartan (15 mg·kg(-1)·day(-1)) and aliskiren (10 mg·kg(-1)·day(-1)), valsartan monotherapy (30 mg·kg(-1)·day(-1)), and aliskiren monotherapy (20 mg·kg(-1)·day(-1)) all significantly ameliorated the increase in blood urea nitrogen and the degree of hydronephrosis determined by the increase in weight and length of the obstructed kidney. The dose titration study and blood pressure measurement confirmed that the combination therapy provided a greater benefit independent of the vasodilatory effect. There were no significant changes in serum levels of creatinine, sodium, and potassium in UUO rats and any treatment groups. Combination therapy also attenuated UUO-related increases in the scores of tubular dilatation, interstitial volume, interstitial collagen deposition, α-smooth muscle actin, the activation of ERK 1/2, the infiltration of monocytes/macrophages, the mRNA expression of snail-1, and transforming growth factor-β1 to a greater extent compared with aliskiren or valsartan used alone. The mRNA expression of renin and the (pro)renin receptor significantly increased after UUO. Combination therapy and monotherapy of valsartan and aliskiren had a comparable enhancing effect on the mRNA expression of renin, whereas all these treatments did not affect the expression of the (pro)renin receptor. In conclusion, a direct renin inhibitor in conjunction with an angiotensin II receptor blocker exerts increased renal protection against renal fibrosis and inflammation during obstruction over either agent alone. Topics: Actins; Amides; Anatomy, Cross-Sectional; Animals; Antihypertensive Agents; Blood Pressure; Blotting, Western; Collagen; Drug Therapy, Combination; Extracellular Signal-Regulated MAP Kinases; Fibrosis; Fumarates; Immunohistochemistry; Kidney; Kidney Diseases; Kidney Function Tests; Male; Neutrophil Infiltration; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Snail Family Transcription Factors; Tetrazoles; Transcription Factors; Ureteral Obstruction; Valine; Valsartan | 2010 |
Endothelin receptor antagonism and renin inhibition as treatment options for scleroderma kidney.
Scleroderma renal crisis (SRC) is an important complication of scleroderma associated with significant morbidity and mortality. Current treatment of patients with SRC focuses on renin-angiotensin-aldosterone system (RAAS) blockade, ideally using angiotensin-converting enzyme inhibitors. We present a case of SRC in a patient established on maximal tolerable RAAS-blocking treatment. Introduction of a selective endothelin-A receptor antagonist followed by a direct renin inhibitor provided excellent blood pressure control and complete abrogation of heavy proteinuria. This was associated with a decrease in kidney function, with serum creatinine level increasing by approximately 30%. This increase is considered acceptable after the introduction of an angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, is regarded as an indicator of drug efficacy, and confers longer term renal protection. Both endothelin receptor antagonism and direct renin inhibition offer alternate novel therapies for patients with SRC. Their ability to preserve or improve kidney function is unclear. Topics: Amides; Antihypertensive Agents; Atrophy; Biomarkers; Biopsy; Endothelin Receptor Antagonists; Female; Fibrosis; Fumarates; Humans; Hypertension, Renal; Isoxazoles; Kidney; Middle Aged; Proteinuria; Pulmonary Fibrosis; Renal Insufficiency, Chronic; Renin; Scleroderma, Systemic; Thiophenes; Treatment Outcome | 2009 |