aliskiren has been researched along with Fatty-Liver* in 2 studies
2 other study(ies) available for aliskiren and Fatty-Liver
Article | Year |
---|---|
Angiotensinogen Exerts Effects Independent of Angiotensin II.
This study determined whether angiotensinogen (AGT) has angiotensin II-independent effects using multiple genetic and pharmacological manipulations.. All study mice were in low-density lipoprotein receptor -/- background and fed a saturated fat-enriched diet. In mice with floxed alleles and a neomycin cassette in intron 2 of the AGT gene (hypoAGT mice), plasma AGT concentrations were >90% lower compared with their wild-type littermates. HypoAGT mice had lower systolic blood pressure, less atherosclerosis, and diminished body weight gain and liver steatosis. Low plasma AGT concentrations and all phenotypes were recapitulated in mice with hepatocyte-specific deficiency of AGT or pharmacological inhibition of AGT by antisense oligonucleotide administration. In contrast, inhibition of AGT cleavage by a renin inhibitor, aliskiren, failed to alter body weight gain and liver steatosis in low-density lipoprotein receptor -/- mice. In mice with established adiposity, administration of AGT antisense oligonucleotide versus aliskiren led to equivalent reductions of systolic blood pressure and atherosclerosis. AGT antisense oligonucleotide administration ceased body weight gain and further reduced body weight, whereas aliskiren did not affect body weight gain during continuous saturated fat-enriched diet feeding. Structural comparisons of AGT proteins in zebrafish, mouse, rat, and human revealed 4 highly conserved sequences within the des(angiotensin I)AGT domain. des(angiotensin I)AGT, through adeno-associated viral infection in hepatocyte-specific AGT-deficient mice, increased body weight gain and liver steatosis, but did not affect atherosclerosis.. AGT contributes to body weight gain and liver steatosis through functions of the des(angiotensin I)AGT domain, which are independent of angiotensin II production. Topics: Amides; Amino Acid Sequence; Angiotensin II; Angiotensinogen; Animals; Atherosclerosis; Blood Pressure; Conserved Sequence; Dependovirus; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Fumarates; Genetic Vectors; Genotype; Hepatocytes; Hypertension; Liver; Male; Mice, Inbred C57BL; Mice, Knockout; Models, Molecular; Oligonucleotides, Antisense; Phenotype; Protein Binding; Protein Interaction Domains and Motifs; Receptors, LDL; Renin; Signal Transduction; Time Factors; Transduction, Genetic; Weight Gain | 2016 |
Aliskiren attenuates steatohepatitis and increases turnover of hepatic fat in mice fed with a methionine and choline deficient diet.
Activation of the renin-angiotensin-system is known to play a role in nonalcoholic steatohepatitis. Renin knockout mice manifest decreased hepatic steatosis. Aliskiren is the first direct renin inhibitor to be approved for clinical use. Our study aims to evaluate the possible therapeutic effects and mechanism of the chronic administration of aliskiren in a dietary steatohepatitis murine model.. Male C57BL/6 mice were fed with a methionine and choline-deficient (MCD) diet to induce steatohepatitis. After 8 weeks of feeding, the injured mice were randomly assigned to receive aliskiren (50 mg·kg(-1) per day) or vehicle administration for 4 weeks. Normal controls were also administered aliskiren (50 mg·kg(-1) per day) or a vehicle for 4 weeks.. In the MCD mice, aliskiren attenuated hepatic steatosis, inflammation and fibrosis. Aliskiren did not change expression of lipogenic genes but increase turnover of hepatic fat by up-regulating peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1a, cytochrome P450-4A14 and phosphorylated AMP-activated protein kinase. Furthermore, aliskiren decreased the hepatic expression of angiotensin II and nuclear factor κB. The levels of oxidative stress, hepatocyte apoptosis, activation of Kupffer cells and hepatic stellate cells, and pro-fibrotic markers were also reduced in the livers of the MCD mice receiving aliskiren.. Aliskiren attenuates steatohepatitis and fibrosis in mice fed with a MCD diet. Thus, the noted therapeutic effects might come from not only the reduction of angiotensin II but also the up-regulation of fatty acid oxidation-related genes. Topics: Amides; Angiotensin II; Animals; Blotting, Western; Choline; Diet; Fatty Liver; Fumarates; Immunoenzyme Techniques; Inflammation; Insulin; Liver; Male; Methionine; Mice; Mice, Inbred C57BL; Oxidative Stress; Real-Time Polymerase Chain Reaction; Renin; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thiobarbituric Acid Reactive Substances; Triglycerides | 2013 |