alendronate-sodium and Disease-Models--Animal

alendronate-sodium has been researched along with Disease-Models--Animal* in 3 studies

Other Studies

3 other study(ies) available for alendronate-sodium and Disease-Models--Animal

ArticleYear
Synthesis and evaluation of andrographolide derivatives as potent anti-osteoporosis agents in vitro and in vivo.
    European journal of medicinal chemistry, 2021, Mar-05, Volume: 213

    In this work, we found that 14-deoxy-11,12-didehydroandrographolide (2), a derivative of andrographolide (AP, 1), had greatly reduced cytotoxicity compared with AP and exhibited moderate anti-osteoclastogenesis activity. Thirty compounds were synthesized by introducing anti-osteoporosis chemotypes at C-19 of 2. Six of them exhibited stronger inhibition of osteoclastogenesis than AP. Of note, compound 12g displayed the most potent activity with IC

    Topics: Animals; Bone Resorption; Cell Differentiation; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Female; Mice; Mice, Inbred C57BL; Molecular Structure; Osteoclasts; Osteogenesis; Osteoporosis; RAW 264.7 Cells; Structure-Activity Relationship

2021
    Journal of natural products, 2021, 04-23, Volume: 84, Issue:4

    Glucosamine hydrochloride (GAH), one of the most basic and important derivatives of chitin, is obtained by hydrolysis of chitin in concentrated hydrochloric acid. At present, little is known about how GAH functions in skeletal development. In this report, we demonstrate that GAH, extracted from the cell wall of

    Topics: Agaricus; Animals; Bone and Bones; Bone Morphogenetic Proteins; Disease Models, Animal; Glucosamine; Larva; Osteoporosis; Regeneration; Signal Transduction; Skeleton; Zebrafish

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020