aldrin has been researched along with Prostatic-Neoplasms* in 2 studies
2 other study(ies) available for aldrin and Prostatic-Neoplasms
Article | Year |
---|---|
Stoichiometric gene-to-reaction associations enhance model-driven analysis performance: Metabolic response to chronic exposure to Aldrin in prostate cancer.
Genome-scale metabolic models (GSMM) integrating transcriptomics have been widely used to study cancer metabolism. This integration is achieved through logical rules that describe the association between genes, proteins, and reactions (GPRs). However, current gene-to-reaction formulation lacks the stoichiometry describing the transcript copies necessary to generate an active catalytic unit, which limits our understanding of how genes modulate metabolism. The present work introduces a new state-of-the-art GPR formulation that considers the stoichiometry of the transcripts (S-GPR). As case of concept, this novel gene-to-reaction formulation was applied to investigate the metabolic effects of the chronic exposure to Aldrin, an endocrine disruptor, on DU145 prostate cancer cells. To this aim we integrated the transcriptomic data from Aldrin-exposed and non-exposed DU145 cells through S-GPR or GPR into a human GSMM by applying different constraint-based-methods.. Our study revealed a significant improvement of metabolite consumption/production predictions when S-GPRs are implemented. Furthermore, our computational analysis unveiled important alterations in carnitine shuttle and prostaglandine biosynthesis in Aldrin-exposed DU145 cells that is supported by bibliographic evidences of enhanced malignant phenotype.. The method developed in this work enables a more accurate integration of gene expression data into model-driven methods. Thus, the presented approach is conceptually new and paves the way for more in-depth studies of aberrant cancer metabolism and other diseases with strong metabolic component with important environmental and clinical implications. Topics: Aldrin; Carnitine; Cell Line, Tumor; Computational Biology; Endocrine Disruptors; Humans; Lipidomics; Male; Metabolic Networks and Pathways; Models, Biological; Prostaglandins; Prostatic Neoplasms; Transcriptome | 2019 |
Preprocessing Tools Applied to Improve the Assessment of Aldrin Effects on Prostate Cancer Cells Using Raman Spectroscopy.
The study of pollutant effects on living organisms provides information about the possible biological and environmental response to a contaminant. Progression of prostate cancer may be related to exposure to pesticides or other chemical substances. In this work, the effect of the pesticide aldrin on human prostate cancer cells (DU145) is studied using Raman spectroscopy and chemometric techniques. Prostate cancer cell line DU145 has been exposed acutely the pesticide aldrin. Individual Raman spectra coming from control and treated cell populations have been acquired. Partial least squares discriminant analysis (PLSDA) has been used to assess differences among treated and control samples and to identify spectral biomarkers associated with pollutant stress. Some preprocessing methodologies have been tested in order to improve the capability of discrimination between fingerprints. Partial least squares discriminant analysis results suggest that the best normalization-scaling preprocessing combination is provided by Euclidean normalization (EN)-SIMPLISMA-based scaling (SBS). SIMPLISMA-based scaling has been proposed as a scaling method focused on the classification objective, which enhances variables with high relative variation among samples. The most relevant spectral variables related to aldrin effect on DU145 seem to be mainly related to lipids, proteins, and variations in nucleic acids. Topics: Aldrin; Cell Line, Tumor; Discriminant Analysis; Disease Progression; Humans; Least-Squares Analysis; Male; Pesticides; Prostate; Prostatic Neoplasms; Spectrum Analysis, Raman | 2018 |