albiflorin has been researched along with Reperfusion-Injury* in 2 studies
2 other study(ies) available for albiflorin and Reperfusion-Injury
Article | Year |
---|---|
Albiflorin relieves cerebral ischemia-reperfusion injury by activating Nrf2/HO-1 pathway.
Our work aims to investigate the functions of a natural compound, Albiflorin (AF) in cerebral ischemia-reperfusion (IR) injury. The cerebral IR models were established by OGD/R in PC12 cells and MCAO/IR in rats. The cells in a glucose-free medium were placed in an anaerobic chamber containing 95% N₂ and 5% CO₂ for 3h at 37°C, returned to a normal medium, and incubated for 24h to accomplish OGD/R. Focal cerebral ischemia was conducted by thread occlusion of the right middle cerebral artery for 2h followed by 24h reperfusion in rats. CCK-8 assay indicated that AF had no toxicity to PC12 cells. Flow cytometry, Western blot, or TUNEL showed that AF treatment reduced apoptosis of cells or rat brain tissues. qRT-PCR and ELISA showed that AF decreased IL-1β, IL-6, and TNF-α levels in vitro and in vivo. Elevated levels of MDA, SOD, and ROS induced by IR injury were mitigated by AF in vitro and in vivo. HE and TTC staining revealed that AF ameliorated pathological injury in MCAO/IR rats. Western blot showed that Nrf2, NQO1, and HO-1 expression was activated by AF, and ML385 treatment suppressed the inhibition effects of AF in cerebral IR injury models. Overall, AF alleviates cerebral IR injury via regulating the Nrf2/HO-1 pathway. Topics: Animals; Apoptosis; Brain Ischemia; NF-E2-Related Factor 2; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reperfusion Injury | 2023 |
Neuroprotective effect of Trichosanthes kirilowii cassia twig on cerebral ischemia-reperfusion injury in rats.
In this study, in-depth observation and investigation of blood-brain barrier permeability and neuroprotective effect of Trichosanthes kirilowii cassia twig particles on rats with cerebral ischemia-reperfusion injury were performed. Focal cerebral ischemia-reperfusion injury model was established by middle cerebral artery occlusion method, reperfusion was implemented 2 hours after ischemia; qualitative analysis and investigation of trichosanthes kirilowii cassia twig particles in plasma, brain tissue and cerebrospinal fluid in normal and middle cerebral artery occlusion (MCAO) rats were done by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS); changes in neurological deficits, cerebral infarction stereometry, blood-brain barrier permeability and histopathological changes of MCAO model rats were observed. Qualitative analysis by HPLC-MS/MS results showed that ingredients, paeoniflorin, albiflorin, liquiritin in Trichosanthes kirilowii cassia twig particles can reach the brain through the blood-brain barrier. In the model group, glycyrrhizin and glycyrrhizic acid can be detected in brain tissue or cerebrospinal fluid. In addition, Trichosanthes kirilowii cassia twig particles can significantly lower neurological deficits of rats in middle cerebral artery occlusion model, reduce the Evans blue penetration, contract infarct size, and reduce pathological tissue injury of cerebral ischemia reperfusion. The ingredients of Trichosanthes kirilowii cassia twig particles can reach the brain tissue through the blood-brain barrier and play a role in neuroprotection of rats with cerebral ischemia-reperfusion injury, which has important research significance and brings scientific experimental, theoretical basis for clinical drug use. Topics: Animals; Blood-Brain Barrier; Brain; Bridged-Ring Compounds; Flavanones; Glucosides; Glycyrrhizic Acid; Infarction, Middle Cerebral Artery; Male; Monoterpenes; Neuroprotective Agents; Plant Components, Aerial; Plant Extracts; Rats; Recovery of Function; Reperfusion Injury; Trichosanthes | 2018 |