alamandine has been researched along with Hypertension* in 12 studies
4 review(s) available for alamandine and Hypertension
Article | Year |
---|---|
Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease.
Renin angiotensin system (RAS) is an endogenous hormone system involved in the control of blood pressure and fluid volume. Dysregulation of RAS has a pathological role in causing cardiovascular diseases through hypertension. Among several key components of RAS, angiotensin peptides, varying in amino acid length and biological function, have important roles in preventing or promoting hypertension, cardiovascular diseases, stroke, vascular remodeling etc. These peptides are generated by the metabolism of inactive angiotensinogen or its derived peptides by hydrolyzing action of certain enzymes. Angiotensin II, angiotensin (1-12), angiotensin A and angiotensin III bind primarily to angiotensin II type 1 receptor and cause vasoconstriction, accumulation of inflammatory markers to sub-endothelial region of blood vessels and activate smooth muscle cell proliferation. Moreover, when bound to angiotensin II type 2 receptor, angiotensin II works as cardio-protective peptide and halt pathological cell signals. Other peptides like angiotensin (1-9), angiotensin (1-7), alamandine and angiotensin IV also help in protecting from cardiovascular diseases by binding to their respective receptors. Topics: Angiotensin I; Angiotensin II; Angiotensin III; Angiotensinogen; Angiotensins; Animals; Blood Pressure; Humans; Hypertension; Oligopeptides; Peptide Fragments; Protective Factors; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renin-Angiotensin System; Signal Transduction; Vasoconstriction | 2018 |
Angiotensin-(1-7) and Alamandine on Experimental Models of Hypertension and Atherosclerosis.
The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1-7) [Ang-(1-7)] and alamandine in experimental hypertension and atherosclerosis.. The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1-7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis. While the beneficial effects of Ang-(1-7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1-7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis. Topics: Angiotensin I; Animals; Atherosclerosis; Humans; Hypertension; Models, Theoretical; Oligopeptides; Peptide Fragments; Renin-Angiotensin System; Vasodilation | 2018 |
ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension.
The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling. Topics: Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Blood Pressure; Cardiovascular Diseases; Humans; Hypertension; Kidney Diseases; Mice; Oligopeptides; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Rats; Renin-Angiotensin System | 2015 |
New components of the renin-angiotensin system: alamandine and the MAS-related G protein-coupled receptor D.
The renin-angiotensin system is an important component of the central and humoral mechanisms of blood pressure and hydro-electrolytic balance control. Angiotensin II is a key player of this system. Twenty-five years ago the first manuscripts describing the formation and actions of another peptide of the RAS, angiotensin-(1-7), were published. Since then several publications have shown that angiotensin-(1-7) is as pleiotropic as angiotensin II, influencing the functions of many organs and systems. The identification of the ACE homologue ACE2 and, a few years later, Mas, as a receptor for angiotensin-(1-7) contributed a great deal to establish this peptide as a key player of the RAS. Most of the actions of angiotensin-(1-7) are opposite to those described for angiotensin II. This has led to the concept of two arms of the RAS: one comprising ACE/AngII/AT1R and the other ACE2/Ang-(1-7)/Mas. More recently, we have described the identification of a novel component of the RAS, alamandine, which binds to the Mas-related G protein coupled receptor D. This peptide is formed by decarboxylation of the Asp residue of angiotensin-(1-7), leading to the formation of Ala as the N-terminal amino acid. Alternatively, it can be formed by hydrolysis of Ang A, by ACE2. Its effects include vasorelaxation, central effects similar to those produced by angiotensin-(1-7), blunting of isoproterenol-induced heart fibrosis, and anti-hypertensive action in SHR. The putative enzyme responsible for alamandine formation from angiotensin-(1-7) is under investigation. The identification of this novel component of the RAS opens new venues for understanding its physiological role and opens new putative therapeutic possibilities for treating cardiovascular diseases. Topics: Angiotensin I; Angiotensin II; Antihypertensive Agents; Cardiovascular Diseases; Humans; Hypertension; Oligopeptides; Peptide Fragments; Receptors, G-Protein-Coupled; Renin-Angiotensin System; Risk Assessment; Sensitivity and Specificity | 2014 |
8 other study(ies) available for alamandine and Hypertension
Article | Year |
---|---|
Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension.
The MrgD receptor agonist, alamandine (ALA) and Mas receptor agonist, AVE0991 have recently been identified as protective components of the renin-angiotensin system. We evaluated the effects of ALA and AVE0991 on cardiovascular function and remodeling in angiotensin (Ang) II-induced hypertension in rats. Sprague Dawley rats were subject to 4-week subcutaneous infusions of Ang II (80 ng/kg/min) or saline after which they were treated with ALA (50 μg/kg), AVE0991 (576 μg/kg), or ALA+AVE0991 during the last 2 weeks. Systolic blood pressure (SBP) and heart rate (HR) values were recorded with tail-cuff plethysmography at 1, 15, and 29 days post-treatment. After euthanization, the heart and thoracic aorta were removed for further analysis and vascular responses. SBP significantly increased in the Ang II group when compared to the control group. Furthermore, Ang II also caused an increase in cardiac and aortic cyclophilin-A (CYP-A), monocyte chemoattractant protein-1 (MCP-1), and cardiomyocyte degeneration but produced a decrease in vascular relaxation. HR, matrix metalloproteinase-2 and -9, NADPH oxidase-4, and lysyl oxidase levels were comparable among groups. ALA, AVE0991, and the drug combination produced antihypertensive effects and alleviated vascular responses. The inflammatory and oxidative stress related to cardiac MCP-1 and CYP-A levels decreased in the Ang II+ALA+AVE0991 group. Vascular but not cardiac angiotensin-converting enzyme-2 levels decreased with Ang II administration but were similar to the Ang II+ALA+AVE0991 group. Our experimental data showed the combination of ALA and AVE0991 was found beneficial in Ang II-induced hypertension in rats by reducing SBP, oxidative stress, inflammation, and improving vascular responses. Topics: Angiotensin II; Animals; Hypertension; Matrix Metalloproteinase 2; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled | 2023 |
Alamandine enhances cardiomyocyte contractility in hypertensive rats through a nitric oxide-dependent activation of CaMKII.
Overstimulation of the renin-angiotensin system (RAS) has been implicated in the pathogenesis of various cardiovascular diseases. Alamandine is a peptide newly identified as a protective component of the RAS; however, the mechanisms involved in its beneficial effects remain elusive. By using a well-characterized rat model of hypertension, the TGR (mREN2)27, we show that mREN ventricular myocytes are prone to contractile enhancement mediated by short-term alamandine (100 nmol/L) stimulation of Mas-related G protein-coupled receptor member D (MrgD) receptors, while Sprague-Dawley control cells showed no effect. Additionally, alamandine prevents the Ca Topics: Animals; Calcium-Binding Proteins; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Hypertension; Male; Myocytes, Cardiac; Nitric Oxide; Oligopeptides; Phosphorylation; Rats; Sarcoplasmic Reticulum; Signal Transduction | 2020 |
Alamandine attenuates angiotensin II-induced vascular fibrosis via inhibiting p38 MAPK pathway.
Topics: Angiotensin II; Animals; Antihypertensive Agents; Aorta, Thoracic; Arterial Pressure; Cells, Cultured; Disease Models, Animal; Fibrosis; Hypertension; Male; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nerve Tissue Proteins; Oligopeptides; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Signal Transduction; Vascular Remodeling | 2020 |
Alamandine attenuates long‑term hypertension‑induced cardiac fibrosis independent of blood pressure.
Cardiac fibrosis secondary to long‑term hypertension is known to promote cardiac dysfunction; however, few therapeutic agents are available for the treatment of this condition in clinical practice. The heptapeptide alamandine (Ala) has recently been identified as a component of the renin‑angiotensin system (RAS), which exerts a protective effect against cardiac hypertrophy; however, it is unknown whether Ala may also be useful for the treatment of cardiac fibrosis. In the present study, the potential therapeutic effects of Ala on long‑term hypertension‑induced cardiac fibrosis were investigated in an aged, spontaneous hypertensive rat model. Weekly blood pressure (BP) measurements revealed that daily Ala treatment significantly decreased the systolic, diastolic and mean arterial BP compared with the control. Of note, the observed reduction in BP in Ala‑treated animals markedly differed to that observed in rats treated with hydralazine (Hyd). Echocardiography further demonstrated that Ala treatment decreased the ratio of left ventricle mass to body weight, and alleviated structural and functional parameters associated with cardiac fibrosis, including left ventricular volume, ejection fraction and fractional shortening compared with the control and Hyd‑treated groups. Furthermore, Ala deceased the density of cardiac fibrosis, as assessed by Masson and Sirius red staining; reduced expression of fibrotic proteins, including connective tissue growth factor, collagen I (COL1A1) and matrix metalloproteinase 9, was also observed. In addition, Ala treatment further decreased the expression of angiotensin II‑induced fibrotic markers at the mRNA and protein levels in cultured cardiac fibroblasts; Ala‑mediated inhibition of COL1A1 expression and Akt phosphorylation was inhibited via the Mas‑related G protein receptor antagonist, PD123319. Collectively, the findings of the present study suggest that Ala is an effective anti‑hypertensive peptide that can attenuate cardiac dysfunction and fibrosis induced by chronic hypertension, independent of BP. Topics: Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Cardiomegaly; Collagen Type I; Collagen Type I, alpha 1 Chain; Fibrosis; Heart Ventricles; Hypertension; Imidazoles; Male; Matrix Metalloproteinase 9; Oligopeptides; Proto-Oncogene Proteins c-akt; Pyridines; Rats; Rats, Inbred SHR; Renin-Angiotensin System | 2019 |
Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats.
Alamandine is a newly discovered new component of the renin-angiotensin (Ang) system (RAS) that has been shown to exert vasoactive effects in some areas of the nervous system. The present study investigated whether administration of alamandine to the hypothalamic paraventricular nucleus (PVN) modulates blood pressure and sympathetic activity. Mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were recorded in anaesthetized rats. PVN microinjection of alamandine increased MAP and RSNA both in Wistar-Kyoto (WKY) rats and in spontaneously hypertensive rats (SHRs), but to a greater extent in SHRs. Moreover, these effects were blocked by pretreatment with alamandine receptor Mas-related G-protein-coupled receptor, member D (MrgD) antagonist D-Pro Topics: Animals; Blood Pressure; Hypertension; Male; Oligopeptides; Paraventricular Hypothalamic Nucleus; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Sprague-Dawley; Sympathetic Nervous System | 2018 |
Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats.
Oral administration of the peptide alamandine has antihypertensive and anti-fibrotic effects in rats. This work aimed to determine whether subcutaneous alamandine injection would attenuate hypertension and cardiac hypertrophy, and improve the function of a major target of hypertension-related damage, the left ventricle (LV), in spontaneously hypertensive rats (SHRs). This was examined in vivo in SHRs and normotensive rats subjected to 6-week subcutaneous infusion of alamandine or saline control, and in vitro in H9C2-derived and primary neonatal rat cardiomyocytes treated with angiotensin (Ang) II to model cardiac hypertrophy. Tail artery blood pressure measurement and transthoracic echocardiography showed that hypertension and impaired LV function in SHRs were ameliorated upon alamandine infusion. Alamandine administration also decreased the mass gains of heart and lung in SHRs, suppressed cardiomyocyte cross-sectional area expansion, and inhibited the mRNA levels of atrial natriuretic peptide and brain natriuretic peptide. The expression of alamandine receptor Mas-related G protein-coupled receptor, member D was increased in SHR hearts and in cardiomyocytes treated with Ang II. Alamandine inhibited the increases of protein kinase A (PKA) levels in the heart in SHRs and in cardiomyocytes treated with Ang II. In conclusion, the present study showed that alamandine administration attenuates hypertension, alleviates cardiac hypertrophy, and improves LV function. PKA signaling may be involved in the mechanisms underlying these effects. Topics: Angiotensins; Animals; Antihypertensive Agents; Cardiomegaly; Cell Line; Cyclic AMP-Dependent Protein Kinases; Echocardiography; Heart Ventricles; Hypertension; Infusions, Subcutaneous; Injections, Subcutaneous; Male; Myocytes, Cardiac; Nerve Tissue Proteins; Oligopeptides; Rats; Rats, Inbred SHR; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled | 2018 |
Hypotensive effect induced by microinjection of Alamandine, a derivative of angiotensin-(1-7), into caudal ventrolateral medulla of 2K1C hypertensive rats.
Topics: Angiotensin I; Angiotensin II Type 2 Receptor Blockers; Animals; Hypertension; Imidazoles; Male; Oligopeptides; Peptide Fragments; Pyridines; Rats; Receptor, Angiotensin, Type 2; Renin-Angiotensin System | 2017 |
Differences in Cardiovascular Responses to Alamandine in Two-Kidney, One Clip Hypertensive and Normotensive Rats.
Alamandine is a newly discovered component of the renin-angiotensin system, which regulates blood pressure. In this study, the effect of alamandine on cardiovascular parameters in two-kidney, one clip (2K1C) hypertensive rats and normotensive rats, and the possible roles of the angiotensin II type 1 receptor (AT1R) and the PD123319-sensitive receptors in mediating this effect was investigated.Methods and Results:The cardiovascular parameters were monitored for 10 min before the infusion of the drugs or saline, and for 30 min afterward. In the 2K1C hypertensive rats, alamandine caused brief increases in mean arterial pressure (MAP), left-ventricular systolic pressure (LVSP) and maximum rate of pressure change in the left ventricle (dP/dt(max)). This was followed by decreases in these parameters, which extended throughout the remainder of the infusion period. Losartan, an AT1R blocker, abolished alamandine's initial pressor effect and PD123319, which can block AT2R and Mas-related G protein-coupled receptor D (MrgD) receptors, partially decreased the late depressor effect. Left ventricular end-diastolic pressure (LVEDP) decreased during alamandine infusion; this effect was reduced by PD123319. In the normotensive rats, alamandine increased MAP, LVSP, dP/dt (max), and it decreased LVEDP during the infusion period. These effects of alamandine were reduced by losartan.. The results of this investigation suggest that, under normal conditions, alamandine acts via AT1R, but in pathological conditions such as hypertension, its effect on PD123319-sensitive receptors masks its effect on AT1R. Topics: Animals; Disease Models, Animal; Hypertension; Kidney; Male; Oligopeptides; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Renin-Angiotensin System | 2017 |