alamandine has been researched along with Heart-Diseases* in 3 studies
1 review(s) available for alamandine and Heart-Diseases
Article | Year |
---|---|
ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis.
The Renin Angiotensin System (RAS) is a pivotal physiological regulator of heart and kidney homeostasis, but also plays an important role in the pathophysiology of heart and kidney diseases. Recently, new components of the RAS have been discovered, including angiotensin converting enzyme 2 (ACE2), Angiotensin(Ang)-(1-7), Mas receptor, Ang-(1-9) and Alamandine. These new components of RAS are formed by the hydrolysis of Ang I and Ang II and, in general, counteract the effects of Ang II. In experimental models of heart and renal diseases, Ang-(1-7), Ang-(1-9) and Alamandine produced vasodilation, inhibition of cell growth, anti-thrombotic, anti-inflammatory and anti-fibrotic effects. Recent pharmacological strategies have been proposed to potentiate the effects or to enhance the formation of Ang-(1-7) and Ang-(1-9), including ACE2 activators, Ang-(1-7) in hydroxypropyl β-cyclodextrin, cyclized form of Ang-(1-7) and nonpeptide synthetic Mas receptor agonists. Here, we review the role and effects of ACE2, ACE2 activators, Ang-(1-7) and synthetic Mas receptor agonists in the control of inflammation and fibrosis in cardiovascular and renal diseases and as counter-regulators of the ACE-Ang II-AT1 axis. We briefly comment on the therapeutic potential of the novel members of RAS, Ang-(1-9) and alamandine, and the interactions between classical RAS inhibitors and new players in heart and kidney diseases. Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Angiotensin-Converting Enzyme Inhibitors; Animals; Heart Diseases; Humans; Kidney Diseases; Oligopeptides; Peptide Fragments; Peptidyl-Dipeptidase A; Proto-Oncogene Mas; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled | 2016 |
2 other study(ies) available for alamandine and Heart-Diseases
Article | Year |
---|---|
Alamandine significantly reduces doxorubicin-induced cardiotoxicity in rats.
Doxorubicin (DOX) is an anthracycline antibiotic. Despite its unwanted side effects, it has been successfully used in tumor therapy. Given that oxidative stress and inflammatory factors are essential to cardiotoxicity caused by DOX, we assumed that alamandine, which enhances endogenous antioxidants and has anti-inflammatory effects, may prevent DOX-induced cardiotoxicity. Rats received DOX (3.75 mg/kg) i.p on days 14, 21, 28, and 35 (total cumulative dose = 15 mg/kg) and alamandine (50 μg/kg/day) via mini-osmotic pumps for 42 days. At the end of the 42-day period, we evaluated hemodynamic parameters, electrocardiogram, cardiac troponin I (cTnI), superoxidase dismutase (SOD), total antioxidant capacity (TAC), malondialdehyde (MDA), inflammatory cytokines (tumor necrosis factor-α (TNF-α), IL-1β, NF-κB), apoptosis markers (caspase 3), and histopathology of haemotoxylin- and eosin-stained cardiac muscle fibers were evaluated. DOX significantly increased QT, corrected QT (QTc), and RR intervals. Alamandine co-therapy prevented ECG changes. Alamandine administration restored DOX-induced disruptions in the cardiac muscle architecture and vascular congestion. Alamandine co-therapy also alleviated other effects of DOX, including cardiac contractility, decreased systolic and diastolic blood pressure, and increased left ventricular end-diastolic pressure. Moreover, alamandine co-therapy substantially decreased the elevation of oxidative stress markers, inflammatory cytokines, and caspase 3 in DOX-treated rats. The results suggest that alamandine reduced DOX-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activities. Topics: Animals; Antibiotics, Antineoplastic; Apoptosis; Biomarkers; Cytokines; Doxorubicin; Gene Expression Regulation; Heart Diseases; Inflammation; Male; Oligopeptides; Random Allocation; Rats; Rats, Sprague-Dawley | 2021 |
Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways.
Sepsis-induced myocardial dysfunction represents a major cause of death. Alamandine is an important biologically active peptide. The present study evaluated whether alamandine improves cardiac dysfunction, inflammation, and apoptosis, and affects the signaling pathways involved in these events. Experiments were carried out in mice treated with lipopolysaccharide (LPS) or alamandine, and in neonatal rat cardiomyocytes. Alamandine increased the ejection fraction and fractional shortening, both of which were decreased upon LPS infusion in mice. LPS and alamandine reduced blood pressure, and increased the expression of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) in the heart in mice. The LPS-induced decrease in α-myosin heavy chain (MHC) and β-MHC, and increase in S100 calcium binding protein A8 (S100A8) and S100A9, were reversed by alamandine pre-treatment. Alamandine pre-treatment prevented LPS-induced myocardial inflammation, apoptosis and autophagy. LPS increased p-ERK, p-JNK, and p-p38 levels, which were inhibited by alamandine. Dibutyryl cyclic AMP (db-cAMP) increased p-ERK, p-JNK, and p-p38 levels, and reversed the inhibitory effects of alamandine on the LPS-induced increase in p-ERK, p-JNK, and p-p38. Moreover, db-cAMP reduced the expression of α-MHC and β-MHC in cardiomyocytes, and reversed the almandine-induced attenuation of the LPS-induced decrease in α-MHC and β-MHC. These results indicate that alamandine attenuates LPS-induced cardiac dysfunction, resulting in increased cardiac contractility, and reduced inflammation, autophagy, and apoptosis. Furthermore, alamandine attenuates sepsis induced by LPS via inhibiting the mitogen-activated protein kinases (MAPKs) signaling pathways. Topics: Animals; Animals, Newborn; Apoptosis; Autophagy; Blood Pressure; Echocardiography; Heart Diseases; Lipopolysaccharides; MAP Kinase Signaling System; Mice; Myocardial Contraction; Myocytes, Cardiac; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oligopeptides; Rats; Sepsis; Stroke Volume | 2018 |