akebia-saponin-d and Osteoporosis

akebia-saponin-d has been researched along with Osteoporosis* in 2 studies

Other Studies

2 other study(ies) available for akebia-saponin-d and Osteoporosis

ArticleYear
Asperosaponin VI Protects Against Bone Loss Due to Hindlimb Unloading in Skeletally Growing Mice Through Regulating Microbial Dysbiosis Altering the 5-HT Pathway.
    Calcified tissue international, 2023, Volume: 112, Issue:3

    Osteoporosis is a complex multifactorial disease that can lead to an increased risk of fracture. However, selective and effective osteoporosis drugs are still lacking. We showed that Asperosaponin VI (AVI) has the implications to be further developed as an alternative supplement for the prevention and treatment of bone loss. AVI has been found to have beneficial effects on metabolic diseases such as bone loss, obesity, and atherosclerosis. Our study was designed to determine the effect and mechanism of action of AVI against bone loss through regulating microbial dysbiosis. A hindlimb unloading mouse model was established to determine the effect of AVI on bone microarchitecture, gut microbiota, and serum metabolites. Eighteen female C57BL/6 J mice were divided into three groups: control, hindlimb unloading with vehicle (HLU), and hindlimb unloading treated with AVI (HLU-AVI, 200 mg/kg/day). AVI was administrated orally for 4 weeks. The results demonstrated that AVI improved the bone microstructure by reversing the decrease in bone volume fraction and trabecular number, and the increase in trabecular separation and structure model index of cancellous bone in hindlimb suspension mice. The results of 16sRNA gene sequencing suggested that the therapeutic effect of AVI on bone loss may be achieved through it regulating the gut microbiota, especially certain specific microorganisms. Combined with the analysis of ELISA, immunohistochemistry, and serum metabolome results, it could be speculated that AVI played an important role in adjusting the balance of bone metabolism by influencing specific flora such as Clostridium and its metabolites to regulate the 5-hydroxytryptophan pathway. The study explored the novel mechanism of AVI against osteoporosis, and has implications for the further development of AVI as an alternative supplement for the prevention and treatment of bone loss.

    Topics: Animals; Dysbiosis; Female; Hindlimb Suspension; Mice; Mice, Inbred C57BL; Osteoporosis; Serotonin

2023
Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model.
    Scientific reports, 2016, 10-19, Volume: 6

    Asperosaponin VI (ASA VI), a natural compound isolated from the well-known traditional Chinese herb Radix Dipsaci, has an important role in promoting osteoblast formation. However, its effects on osteoblasts in the context of osteoporosis is unknown. This study aimed to investigate the effects and mechanism of ASA VI action on the proliferation and osteogenic differentiation of bone marrow stromal cells isolated from the ovariectomized rats (OVX rBMSCs). The toxicity of ASA VI and its effects on the proliferation of OVX rBMSCs were measured using a CCK-8 assay. Various osteogenic differentiation markers were also analyzed, such as ALP activity, calcified nodule formation, and the expression of osteogenic genes, i.e., ALP, OCN, COL 1 and RUNX2. The results indicated that ASA VI promoted the proliferation of OVX rBMSCs and enhanced ALP activity and calcified nodule formation. In addition, while ASA VI enhanced the expression of ALP, OCN, Col 1 and RUNX2, treatment with LY294002 reduced all of these osteogenic effects and reduced the p-AKT levels induced by ASA VI. These results suggest that ASA VI promotes the osteogenic differentiation of OVX rBMSCs by acting on the phosphatidylinositol-3 kinase/AKT signaling pathway.

    Topics: Animals; Bone Marrow; Cell Differentiation; Disease Models, Animal; Drugs, Chinese Herbal; Gene Expression Regulation, Developmental; Humans; Oncogene Protein v-akt; Osteogenesis; Osteoporosis; Phosphatidylinositol 3-Kinases; Ranunculaceae; Rats; Saponins; Signal Transduction; Stromal Cells

2016