agnuside has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for agnuside and Disease-Models--Animal
Article | Year |
---|---|
Agnuside mitigates OVA-LPS induced perturbed lung homeostasis via modulating inflammatory, autophagy, apoptosis-fibrosis response and myeloid lineages in mice model of allergic asthma.
Attributes of agnuside, a nontoxic, iridoid glycoside have been advocated for inflammatory disorders. However, information on its efficacy in alleviating allergic asthma largely remain ambiguous and yet to be deciphered. Present study aimed to assess efficacy of agnuside in targeting vicious circle of oxi-inflammation, autophagy and fibrosis, together with investigating its underlying molecular mechanism during OVA-LPS induced allergic asthma. Results revealed that agnuside showed prophylactic effect in assuaging asthmatic lung architecture impairment (p ≤ 0.01) as indicated by suppression of inflammatory cell infiltration, congestion, fibrosis, airway remodeling and alveolar collapse in OVA-LPS sensitized group. Decreased expression level (p ≤ 0.05) of allergic inflammatory mediators such as IgE, Th1/Th2, IL-4/IFN-γ, IL-4/IL-10, chemokines, endopeptidases and TGF-β, Smad2/4, Caspase9/3, connexin 43/50 observed in agnuside treatments. Analysis of redox molecular signaling cascade and autophagic proteins revealed concurrent upregulation in p-NF-κB, p-PI3K, p-Akt, p-p38, p-Stat3 activation, GATA3, LC3B expression and reduction in Bcl2/Bax, Beclin1 and p62 expression in sensitized mice (p ≤ 0.05) which were intensely counteracted by administration of agnuside. Suppression in myeloid cells activation and augmentation (p ≤ 0.001) of Tregs established modulatory attribute of agnuside for innate and adaptive immune response during allergic asthma. Collectively, these outcomes confer prophylactic attribute of agnuside and signify it as promising strategy to thwart allergic asthma. Topics: Animals; Apoptosis; Asthma; Autophagy; Bronchoalveolar Lavage Fluid; Cell Lineage; Cytokines; Disease Models, Animal; Fibrosis; Glucosides; Homeostasis; Lung; Mice; Mice, Inbred BALB C; Ovalbumin | 2022 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |