ag-490 has been researched along with Pain* in 2 studies
1 review(s) available for ag-490 and Pain
Article | Year |
---|---|
Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target?
Potassium (K(+)) channels are membrane proteins expressed in most living cells that selectively control the flow of K(+) ions. More than 80 genes encode the K(+) channel subunits in the human genome. The TWIK-related K(+) channel (TREK-1) belongs to the two-pore domain K(+) channels (K2P) and displays various properties including sensitivity to physical (membrane stretch, acidosis, temperature) and chemical stimuli (signaling lipids, volatile anesthetics). The distribution of TREK-1 in the central nervous system, coupled with the physiological consequences of its opening and closing, leads to the emergence of this channel as an attractive therapeutic target. We review the TREK-1 channel, its structural and functional properties, and the pharmacological agents (agonists and antagonists) able to modulate its gating. Topics: Arrhythmias, Cardiac; Depression; Epilepsy; Humans; Inflammation; Models, Molecular; Molecular Structure; Neuroprotective Agents; Pain; Potassium Channels, Tandem Pore Domain; Structure-Activity Relationship | 2016 |
1 other study(ies) available for ag-490 and Pain
Article | Year |
---|---|
Blockade of JAK2 retards cartilage degeneration and IL-6-induced pain amplification in osteoarthritis.
Osteoarthritis (OA) is a complex chronic inflammatory disease characterized by articular degeneration and pain. Recent studies have identified interleukin 6 (IL-6) as a potential mediator leading to OA, but the therapeutic effects of inhibiting IL-6 signaling in intreating OA need to be further clarified. Here, we identified the intracellular signal transduction induced by recombinant IL-6 and focused on the impact of tyrphostin AG490 (a JAK2 inhibitor) on cartilage degeneration and OA pain. We found that IL-6 increased the inflammatory cytokines production and hypertrophic markers expression of primary mouse chondrocytes by activating JAK2/STAT3. Meanwhile, tyrphostin AG490 significantly attenuated articular degeneration and osteophyte formation in experimental mice with anterior cruciate ligament transection (ACLT) surgery. In vivo electrophysiological experiments showed that articular stimulation of IL-6 induced spinal hyperexcitability, which was prevented by coinjection of tyrphostin AG490. Specifically, compared with DMSO-treated ACLT mice, tyrphostin AG490 improved ambulate activity of mice and abolished the enhancement of serum bradykinin induced by IL-6. Together, we suggest that tyrphostin AG490 protected against progression of OA and improved OA prognosis by reducing cartilage degeneration and arthritis pain. Our findings provide further evidence for targeting IL-6 signaling in the treatment of OA. Topics: Animals; Cartilage, Articular; Chondrocytes; Disease Models, Animal; Interleukin-6; Osteoarthritis; Pain; Tyrphostins | 2022 |