ag-490 and Obesity
ag-490 has been researched along with Obesity* in 5 studies
Other Studies
5 other study(ies) available for ag-490 and Obesity
Article | Year |
---|---|
IL-6 mediates differentiation disorder during spermatogenesis in obesity-associated inflammation by affecting the expression of Zfp637 through the SOCS3/STAT3 pathway.
Zfp637 is a recently identified zinc finger protein, and its functions remain largely unknown. Here, we innovatively demonstrate the effects of Zfp637 on the differentiation of mouse spermatogonia and on its downstream target gene SOX2 in vitro. Obesity has been recognized as a chronic inflammatory disease that leads to decreased sexual function and sexual development disorders. We observed higher levels of IL-6 in serum and testis homogenates from obese mice compared with control mice. We also demonstrated that high levels of IL-6 inhibited Zfp637 expression, and we elucidated the underlying mechanisms. SOCS3 overexpression and STAT3 phosphorylation inhibitor (AG490) were used to investigate the function of the SOCS3/STAT3 pathway during this process. Our results showed that exposure of mouse spermatogonial cells to high levels of IL-6 inhibited Zfp637 expression by increasing SOCS3 expression and inhibiting the phosphorylation of STAT3, further reducing cellular differentiation. Consistent with the in vitro results, we observed increasing expression levels of SOCS3 and SOX2, but a reduction of Zfp637 expression, in obese mouse testes. In conclusion, Zfp637 plays a crucial role in spermatogenesis by downregulating SOX2 expression, and IL-6 can decrease the expression of Zfp637 through the SOCS3/STAT3 signaling pathway. Topics: Animals; Cell Line; DNA-Binding Proteins; Down-Regulation; Inflammation; Interleukin-6; Leptin; Male; Mice; Mice, Obese; Obesity; Phosphorylation; RNA Interference; Signal Transduction; SOXB1 Transcription Factors; Spermatogenesis; Spermatogonia; STAT3 Transcription Factor; Suppressor of Cytokine Signaling 3 Protein; Testis; Tyrphostins | 2016 |
Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by increasing cyclin D1 and Mcl-1 expression via the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways.
Obesity is known to be an important risk factor for many types of cancer, such as breast, prostate, liver and endometrial cancer. Recently, epidemiological studies have indicated that obesity correlates with an increased risk of developing ovarian cancer, the most lethal gynecological cancer in developed countries. Leptin is predominantly produced by adipocytes and acts as a growth factor and serum leptin levels positively correlate with the amount of body fat. In this study, we investigated the effects of leptin on the growth of ovarian cancer cells and the underlying mechanism(s) of action. Our results showed that leptin stimulated the growth of the OVCAR-3 ovarian cancer cell line using MTT assay and trypan blue exclusion. Using western blot analysis, we found that leptin enhanced the expression of cyclin D1 and Mcl-1, which are important regulators of cell proliferation and the inhibition of apoptosis. To investigate the signaling pathways that mediate the effects of leptin, cells were treated with leptin plus specific inhibitors of JAK2, PI3K/Akt and MEK/ERK1/2 and analysis of the phosphorylation state of proteins was carried out by western blot assays. We showed that the activation of the MEK/ERK1/2 and PI3K/Akt signaling pathways were involved in the growth-stimulating effect of leptin on ovarian cancer cell growth and the specific inhibitors of PI3K/Akt and MEK/ERK1/2 revealed that these two pathways interacted with each other. Our data demonstrate that leptin upregulates the expression of cyclin D1 and Mcl-1 to stimulate cell growth by activating the PI3K/Akt and MEK/ERK1/2 pathways in ovarian cancer. Topics: Apoptosis; Butadienes; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Enzyme Activation; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Female; Flavonoids; Humans; Janus Kinase 2; Leptin; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Myeloid Cell Leukemia Sequence 1 Protein; Nitriles; Obesity; Ovarian Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Tyrphostins | 2013 |
A Jak2 inhibitor, AG490, reverses lipin-1 suppression by TNF-alpha in 3T3-L1 adipocytes.
Lipin-1 is a multifunctional metabolic regulator, involving in triacylglycerol and bioactive glycerolipids synthesis as an enzyme, transcriptional regulation as a coactivator, and adipogenesis. In obesity, adipose lipin-1 expression is decreased. Although lipin-1 is implicated in the pathogenesis of obesity, the mechanism is still not clear. Since TNF-alpha is deeply involved in the pathogenesis of obesity, insulin resistance, and diabetes, here we investigated the role of TNF-alpha on lipin-1 expression in adipocytes. Quantitative PCR studies showed that TNF-alpha suppressed both lipin-1A and -1B isoform expression in time- and dose-dependent manners in mature 3T3-L1 adpocytes. A Jak2 inhibitor, AG490, reversed the suppressive effect of TNF-alpha on both lipin-1A and -1B. In contrast, NF-kappaB, MAPKs, ceramide, and beta-catenin pathway tested were not involved in the mechanism. These results suggest that TNF-alpha could be involved in obesity-induced lipin-1 suppression in adipocytes and Jak2 may play an important role in the mechanism. Topics: 3T3-L1 Cells; Animals; Janus Kinase 2; Mice; Nuclear Proteins; Obesity; Phosphatidate Phosphatase; Protein Kinase Inhibitors; RNA, Messenger; Tumor Necrosis Factor-alpha; Tyrphostins | 2009 |
High-fat diet-induced obesity leads to resistance to leptin-induced cardiomyocyte contractile response.
Levels of the obese gene product leptin are often elevated in obesity and may contribute to obesity-induced cardiovascular complications. However, the role of leptin in obesity-associated cardiac abnormalities has not been clearly defined. This study was designed to determine the influence of high-fat diet-induced obesity on cardiac contractile response of leptin. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix system in cardiomyocytes from adult rats fed low- and high-fat diets for 12 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were examined including peak shortening, duration and maximal velocity of shortening/relengthening (TPS/TR(90), +/-dl/dt), Fura-2-fluorescence intensity change (DeltaFFI), and intracellular Ca(2+) decay rate (tau). Expression of the leptin receptor (Ob-R) was evaluated by western blot analysis. High-fat diet increased systolic blood pressure and plasma leptin levels. PS and +/-dl/dt were depressed whereas TPS and TR(90) were prolonged after high-fat diet feeding. Leptin elicited a concentration-dependent (0-1,000 nmol/l) inhibition of PS, +/-dl/dt, and DeltaFFI in low-fat but not high-fat diet-fed rat cardiomyocytes without affecting TPS and TR(90). The Janus kinase 2 (JAK2) inhibitor AG490, the mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nitric oxide synthase (NOS) inhibitor L-NAME abrogated leptin-induced cardiomyocyte contractile response in low-fat diet group without affecting the high-fat diet group. High-fat diet significantly downregulated cardiac expression of Ob-R. Elevation of extracellular Ca(2+) concentration nullified obesity-induced cardiomyocyte mechanical dysfunction and leptin-induced depression in PS. These data indicate presence of cardiac leptin resistance in diet-induced obesity possibly associated with impaired leptin receptor signaling. Topics: Animals; Calcium; Cells, Cultured; Diet, Fat-Restricted; Dietary Fats; Enzyme Inhibitors; Imidazoles; Leptin; Male; Myocardial Contraction; Myocardium; Myocytes, Cardiac; NG-Nitroarginine Methyl Ester; Obesity; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Leptin; Tyrphostins | 2008 |
leptin-induced growth stimulation of breast cancer cells involves recruitment of histone acetyltransferases and mediator complex to CYCLIN D1 promoter via activation of Stat3.
Numerous epidemiological studies documented that obesity is a risk factor for breast cancer development in postmenopausal women. Leptin, the key player in the regulation of energy balance and body weight control also acts as a growth factor on certain organs in both normal and disease state. In this study, we analyzed the role of leptin and the molecular mechanism(s) underlying its action in breast cancer cells that express both short and long isoforms of leptin receptor. Leptin increased MCF7 cell population in the S-phase of the cell cycle along with a robust increase in CYCLIN D1 expression. Also, leptin induced Stat3-phosphorylation-dependent proliferation of MCF7 cells as blocking Stat3 phosphorylation with a specific inhibitor, AG490, abolished leptin-induced proliferation. Using deletion constructs of CYCLIN D1 promoter and chromatin immunoprecipitation assay, we show that leptin induced increase in CYCLIN D1 promoter activity is mediated through binding of activated Stat3 at the Stat binding sites and changes in histone acetylation and methylation. We also show specific involvement of coactivator molecules, histone acetyltransferase SRC1, and mediator complex in leptin-mediated regulation of CYCLIN D1 promoter. Importantly, silencing of SRC1 and Med1 abolished the leptin induced increase in CYCLIN D1 expression and MCF7 cell proliferation. Intriguingly, recruitment of both SRC1 and Med1 was dependent on phosphorylated Stat3 as AG490 treatment inhibited leptin-induced recruitment of these coactivators to CYCLIN D1 promoter. Our data suggest that CYCLIN D1 may be a target gene for leptin mediated growth stimulation of breast cancer cells and molecular mechanisms involve activated Stat3-mediated recruitment of distinct coactivator complexes. Topics: Acetylation; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Chromatin Immunoprecipitation; Cyclin D; Cyclins; Endodeoxyribonucleases; Female; Histone Acetyltransferases; Histones; Humans; Leptin; Methylation; Obesity; Postmenopause; Promoter Regions, Genetic; Protein Modification, Translational; S Phase; STAT3 Transcription Factor; Tyrphostins | 2007 |