ag-490 has been researched along with Necrosis* in 2 studies
2 other study(ies) available for ag-490 and Necrosis
Article | Year |
---|---|
The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death.
The formulation of quercetin nanoliposomes (QUE-NLs) has been shown to enhance QUE antitumor activity in C6 glioma cells. At high concentrations, QUE-NLs induce necrotic cell death. In this study, we probed the molecular mechanisms of QUE-NL-induced C6 glioma cell death and examined whether QUE-NL-induced programmed cell death involved Bcl-2 family and mitochondrial pathway through STAT3 signal transduction pathway. Downregulation of Bcl-2 and the overexpression of Bax by QUE-NL supported the involvement of Bcl-2 family proteins upstream of C6 glioma cell death. In addition, the activation of JAK2 and STAT3 were altered following exposure to QUE-NLs in C6 glioma cells, suggesting that QUE-NLs downregulated Bcl-2 mRNAs expression and enhanced the expression of mitochondrial mRNAs through STAT3-mediated signaling pathways either via direct or indirect mechanisms. There are several components such as ROS, mitochondrial, and Bcl-2 family shared by the necrotic and apoptotic pathways. Our studies indicate that the signaling cross point of the mitochondrial pathway and the JAK2/STAT3 signaling pathway in C6 glioma cell death is modulated by QUE-NLs. In conclusion, regulation of JAK2/STAT3 and ROS-mediated mitochondrial pathway agonists alone or in combination with treatment by QUE-NLs could be a more effective method of treating chemical-resistant glioma. Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Shape; Cell Survival; Drug Screening Assays, Antitumor; Glioma; Humans; Janus Kinase 2; L-Lactate Dehydrogenase; Liposomes; Mitochondria; Nanocapsules; Necrosis; Particle Size; Quercetin; Reactive Oxygen Species; Signal Transduction; STAT3 Transcription Factor; Tumor Suppressor Protein p53; Tyrphostins | 2013 |
Antiapoptotic properties of erythropoiesis-stimulating proteins in models of cisplatin-induced acute kidney injury.
Erythropoietin (Epo) induces erythrocytosis by suppressing erythroid progenitor cell apoptosis through the Janus-activated kinase-signal transducers and activators of transcription (JAK-STAT) pathway. Since apoptosis contributes to cisplatin (CP)-induced nephrotoxicity and Epo receptors (EpoR) are expressed in the kidney, we examined the role of antiapoptosis in recombinant human erythropoietin (rHuEpo)-mediated renal protection. In human renal proximal tubular epithelial (RPTE) cells in culture, rHuEpo, but not inactive rHuEpo (I-rHuEpo), the receptor-binding sites of which are mutated, caused a significant reduction in CP-induced apoptosis at > or = 100 U/ml. rHuEpo, but not I-rHuEpo, increased STAT5 and Akt/PKB phosphorylation, demonstrating functional EpoR expression on RPTE cells. Furthermore, the JAK2 inhibitor tyrphostin AG-490 attenuated rHuEpo protection, suggesting a role of the JAK-STAT pathway in rHuEpo-mediated antiapoptosis. In rats, intravenous administration of 5,000 U/kg rHuEpo, but not an equivalent peptide mass of I-rHuEpo, before a single 5.5 mg/kg iv injection of CP, significantly increased hematocrit (Hct) and reduced the CP-induced increase in serum creatinine. Serum creatinine on day 4 was 3.4 +/- 0.3, 1.9 +/- 0.3, and 3.5 +/- 0.4 mg/dl in the CP, CP + rHuEpo, and CP + I-rHuEpo groups, respectively. Similarly, darbepoietin-alpha (DA), a hyperglycosylated analog of rHuEpo with prolonged in vivo activity when injected at 25 microg/kg iv before CP, significantly increased Hct and reduced serum creatinine. Renal clearance studies based on glomerular filtration rate and renal blood flow confirmed the significant renal protection by DA against CP. Tubular apoptosis and necrosis were significantly reduced in the kidneys of the CP + DA vs. the CP + saline group. Moreover, the equalization of Hct by venesection did not abrogate the DA-mediated renal protection. Administration of DA 48 h after CP injection also conferred significant renal protection. Thus our experiments confirm a role for erythropoiesis-stimulating proteins, including the new analog DA, in limiting CP-induced nephrotoxicity and suggest that antiapoptosis via the Epo-EpoR interaction is an important mechanism for renal protection. Topics: Acute Kidney Injury; Animals; Antineoplastic Agents; Apoptosis; Cells, Cultured; Cisplatin; Darbepoetin alfa; Disease Models, Animal; Enzyme Inhibitors; Erythropoietin; Hematinics; Hematocrit; Humans; Janus Kinase 2; Kidney; Male; Necrosis; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, Erythropoietin; Recombinant Proteins; STAT5 Transcription Factor; Tyrphostins | 2008 |