ag-213 has been researched along with Disease-Models--Animal* in 4 studies
1 review(s) available for ag-213 and Disease-Models--Animal
Article | Year |
---|---|
Rieger syndrome revisited: experimental approaches using pharmacologic and antisense strategies to abrogate EGF and TGF-alpha functions resulting in dysmorphogenesis during embryonic mouse craniofacial morphogenesis.
The major manifestations of Rieger syndrome (RS), an autosomal dominant disorder, include absent maxillary incisor teeth, malformations of the anterior chamber of the eye, and umbilical anomalies [Aarskog et al., 1983: Am J Med Genet 15:29-38; Gorlin et al., 1990: "Syndromes of the Head and Neck" 3rd ed.]. Linkage of RS to human chromosome 4q markers has been identified with tight linkage to epidermal growth factor (EGF) [Murray et al., 1992: Nat Genet 2:46-48]. Mutations associated with genes of the EGF superfamily are implicated in malformations arising from abnormal development of the first branchial arch [Ardinger et al., 1989: Am J Hum Genet 45:348-353; Sassani et al., 1993: Am J Med Genet 45:565-569]. Down-regulation of EGF during early mouse development results in ablation of tooth formation [Kronmiller et al., 1991: Dev Biol 147:485-488]. Since EGF, TGF-alpha, and EGF receptor (EGFr) transcripts are expressed in the mouse first branchial arch and derivatives, experimental strategies were employed to investigate the consequences of down-regulation of EGF translation and inhibition of EGF receptor during embryonic mandibular morphogenesis. Antisense inhibition of EGF expression produces mandibular dysmorphogenesis with decreased tooth bud size; these effects are reversed by the addition of exogenous EGF to the culture medium [Shum et al., 1993: Development 118:903-917]. Tyrphostin RG 50864, which inhibits EGF receptor kinase activity, inhibits EGF or TGF-alpha stimulation of tyrosine phosphorylation in a concentration-dependent manner and severely retards mandibular development [Shum et al., 1993: Development 118:903-917].(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Base Sequence; Catechols; Disease Models, Animal; DNA, Antisense; Epidermal Growth Factor; ErbB Receptors; Facial Bones; Gene Expression; Humans; Mice; Molecular Sequence Data; Nitriles; Protein-Tyrosine Kinases; Signal Transduction; Skull; Syndrome; Tooth Abnormalities; Transforming Growth Factor alpha; Tyrphostins | 1993 |
3 other study(ies) available for ag-213 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries.
Human tissue transglutaminase (TGM2) is a calcium-dependent crosslinking enzyme involved in the posttranslational modification of intra- and extracellular proteins and implicated in several neurodegenerative diseases. To find specific inhibitors to TGM2, two structurally diverse chemical libraries (LOPAC and Prestwick) were screened. We found that ZM39923, a Janus kinase inhibitor, and its metabolite ZM449829 were the most potent inhibitors with IC(50) of 10 and 5 nM, respectively. In addition, two other inhibitors, including tyrphostin 47 and vitamin K(3), were found to have an IC(50) in the micromolar range. These agents used in part a thiol-dependent mechanism to inhibit TGM2, consistent with the activation of TGM2 by reduction of an intramolecular disulfide bond. These inhibitors were tested in a polyglutamine-expressing Drosophila model of neurodegeneration and found to improve survival. The TGM2 inhibitors we discovered may serve as valuable lead compounds for the development of orally active TGM2 inhibitors to treat human diseases. Topics: Animals; Calcium; Combinatorial Chemistry Techniques; Disease Models, Animal; Drosophila melanogaster; Drug Evaluation, Preclinical; Enzyme Inhibitors; Factor XIIIa; GTP-Binding Proteins; Guanosine Triphosphate; Humans; Machado-Joseph Disease; Molecular Structure; Naphthoquinones; Octoxynol; Protein Glutamine gamma Glutamyltransferase 2; Transglutaminases; Tyrphostins | 2008 |
Influence of local delivery of the protein tyrosine kinase receptor inhibitor tyrphostin-47 on smooth-muscle cell proliferation in a rat carotid balloon-injury model.
Smooth-muscle cell proliferation in response to arterial injury represents an important etiologic factor in restenosis after angioplasty. Tyrphostin-47, a protein tyrosine kinase inhibitor, inhibits smooth-muscle cell proliferation in vitro. In this study tyrphostin-47 was incorporated into matrixes to determine whether prolonged local delivery would result in a reduction of neointimal proliferation after arterial injury in a rat carotid balloon-injury model. A polymer matrix (polylactic polyglycolic acid copolymer and pluronic gel F-127, mean matrix weight 7.83 +/- 0.39 mg) was loaded with tyrphostin-47 (25% w/w). Release studies demonstrated delivery of 11% of the incorporated drug over a 21-day release period. In cell culture, tyrphostin-47 released from the polymer matrix produced a reduction in smooth-muscle cell proliferation (p < 0.0007). Balloon denudation injury of the left common carotid artery of 34 animals was performed. In 12 animals, polymer matrixes containing tyrphostin-47 were wrapped around the injured arteries to provide prolonged drug delivery (estimated dosage 28 micrograms/kg/24 hr); in 10 animals a polymer matrix without tyrphostin-47 was implanted; and in 12 animals only balloon injury was performed. The mean neointimal cross-sectional areas, luminal areas, and intima/media ratios were not significantly different among animals receiving local treatment with tyrphostin-47, sham polymer after injury, or balloon injury without polymer implantation. We conclude that despite inhibition of smooth-muscle cell proliferation by tyrphostin-47 in vitro, sustained local delivery of this tyrosine kinase inhibitor does not result in a reduction of neointimal proliferation in the rat carotid injury model. Topics: Animals; Carotid Artery, Common; Cell Division; Cells, Cultured; Disease Models, Animal; Drug Delivery Systems; Male; Muscle, Smooth; Nitriles; Phenols; Polymers; Protein-Tyrosine Kinases; Rats; Rats, Sprague-Dawley; Tunica Intima; Tyrphostins | 1997 |