adrenomedullin has been researched along with Liver-Diseases* in 4 studies
2 review(s) available for adrenomedullin and Liver-Diseases
Article | Year |
---|---|
The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule.
The hyperdynamic circulatory syndrome observed in chronic liver diseases is a great example of research that originated from clinical observations and progressed in the last 50 years from the patient to the experimental laboratory. Our knowledge has evolved from the patient to the molecule, using experimental models that serve as a source for understanding the complex pathophysiological mechanisms that govern this complex syndrome. We now know that progressive vasodilatation is central to the detrimental effects observed in multiple organs. Although nitric oxide has been shown to be the primary vasodilator molecule in these effects, other molecules also participate in the complex mechanisms of vasodilatation. This review summarizes three major areas: first, clinical observation in patients; second, experimental models used to study the hyperdynamic circulatory syndrome; and third, the vasodilator molecules that play roles in vascular abnormalities observed in portal hypertension. Topics: Adrenomedullin; Animals; Biological Factors; Blood Pressure; Cannabinoid Receptor Modulators; Carbon Monoxide; Chronic Disease; Disease Models, Animal; Endothelium, Vascular; Humans; Hydrogen Sulfide; Hypertension, Portal; Liver; Liver Diseases; Nitric Oxide; Peptides; Splanchnic Circulation; Tumor Necrosis Factor-alpha; Vasodilation | 2006 |
Neurohumoral fluid regulation in chronic liver disease.
Impaired homeostasis of the blood volume, with increased fluid and sodium retention, is a prevailing element in the deranged systemic and splanchnic haemodynamics in patients with liver disease. In this review, some basic elements of the circulatory changes that take place and of neurohumoral fluid regulation are outlined in order to provide an update of recent investigations on the neuroendocrine compensation of circulatory and volume dysfunction in chronic liver disease. The underlying pathophysiology is a systemic vasodilatation in which newly described potent vasoactive substances such as nitric oxide and vasodilating peptides seem to play an important role. The development of central hypovolaemia and activation of potent vasoconstricting systems such as the renin-angiotensin-aldosterone system and the sympathetic nervous system lead to a hyperdynamic circulation with increased heart rate and cardiac output. Moreover, patients exhibit an autonomic dys- and hyperfunction with vascular hyporeactivity to pressor stimuli. The circulatory dysfunction may be part of a multiorgan failure with disturbed haemodynamics of various vascular beds, including those of the splanchnic system, kidneys, brain and lungs. It is still an enigma why patients with chronic liver disease are at the same time overloaded and functional hypovolaemic with a hyperdynamic, hyporeactive circulation. Further research is needed to find the solution to this apparent haemodynamic conflict concerning the abnormal neurohumoral fluid regulation in chronic liver disease. Topics: Adrenomedullin; Body Fluids; Calcitonin Gene-Related Peptide; Hemodynamics; Homeostasis; Humans; Kidney; Liver Diseases; Nitric Oxide; Peptides; Vasodilator Agents | 1998 |
2 other study(ies) available for adrenomedullin and Liver-Diseases
Article | Year |
---|---|
Human adrenomedullin and its binding protein attenuate organ injury and reduce mortality after hepatic ischemia-reperfusion.
To determine whether administration of a vasoactive peptide, human adrenomedullin (AM), in combination with its binding protein (ie, AMBP-1), prevents or minimizes hepatic ischemia-reperfusion (I/R) injury.. Hepatic I/R injury results from tissue hypoxia and subsequent inflammatory responses. Even though numerous pharmacological modalities and substances have been studied to reduce I/R-induced mortality, none have been entirely successful. We have shown that administration of AM/AMBP-1 produces significant beneficial effects under various pathophysiological conditions. However, it remains unknown if human AM/AMBP-1 has any protective effects on hepatic I/R-induced tissue damage and mortality.. Seventy percent hepatic ischemia was induced in male adult rats by placing a microvascular clip across the hilum of the left and median lobes for 90 minutes. After removing the clip, human AM alone, human AMBP-1 alone, human AM in combination with human AMBP-1 or vehicle was administered intravenously over a period of 30 minutes. Blood and tissue samples were collected 4 hours after reperfusion for various measurements. In additional groups of animals, the nonischemic liver lobes were resected at the end of 90-minute ischemia. The animals were monitored for 7 days and survival was recorded.. After hepatic I/R, plasma levels of AM were significantly increased, whereas AMBP-1 levels were markedly decreased. Likewise, gene expression of AM in the liver was increased significantly, whereas AMBP-1 expression was markedly decreased. Administration of AM in combination with AMBP-1 immediately after the onset of reperfusion down-regulated inflammatory cytokines, decreased hepatic neutrophil infiltration, inhibited liver cell apoptosis and necrosis, and reduced liver injury and mortality in a rat model of hepatic I/R. On the other hand, administration of human AM alone or human AMBP-1 alone after hepatic I/R failed to produce significant protection.. Human AM/AMBP-1 may be a novel treatment to attenuate tissue injury after an episode of hepatic ischemia. Topics: Adrenomedullin; Animals; Complement Factor H; Disease Models, Animal; Liver; Liver Diseases; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Vasodilator Agents | 2009 |
Effect of adrenomedullin on hepatic damage in hepatic ischaemia/reperfusion injury in rats.
Adrenomedullin (AM) is a multifunctional peptide with a putative beneficial role after an ischaemic insult. The aim of this study was to evaluate the effect of AM on partial hepatic ischaemia reperfusion (I/R) injury.. Rats were subjected to 1 h of 70% hepatic ischaemia, followed by reperfusion or sham. At the end of ischaemia, vehicle (phosphate-buffered saline solution), N-nitro-L-arginine methyl ester (L-NAME) and AM with or without L-NAME were infused via the portal vein. Analysis was performed at pre-ischaemia, ischaemia onset and 1, 2 and 4 h after reperfusion. Hepatic tissue blood flow (HTBF) was evaluated by laser Doppler.. Plasma AM levels in the I/R groups were significantly lower than the levels in the sham group. AM treatment significantly reduced levels of aspartate transaminase and tissue arginase (P<0.05). Significant decreases of tumour necrosis factor-alpha, interleukin-1beta and endothelin-1 levels were also found in the serum. Endothelin-1, malondialdehyde and necrosis were observed more frequently in liver tissue in the AM group than the control (P<0.05). Tissue nitric oxide, energy charge and HTBF were significantly increased in AM treatment experiments (P<0.05).. The improved HTBF, energy charge and nitric oxide and the reduction of hepatic necrosis, oxidative stress, liver enzymes, endotelin-1 and pro-inflammatory cytokines demonstrate that treatment with AM attenuates liver I/R injury. Topics: Adrenomedullin; Animals; Arginase; Aspartate Aminotransferases; Blood Flow Velocity; Disease Models, Animal; Drug Therapy, Combination; Endothelin-1; Enzyme Inhibitors; Interleukin-1beta; Liver Diseases; Male; Malondialdehyde; NG-Nitroarginine Methyl Ester; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Reperfusion Injury; Tumor Necrosis Factor-alpha; Vasodilator Agents | 2008 |