adrenomedullin and Glomerulosclerosis--Focal-Segmental

adrenomedullin has been researched along with Glomerulosclerosis--Focal-Segmental* in 4 studies

Other Studies

4 other study(ies) available for adrenomedullin and Glomerulosclerosis--Focal-Segmental

ArticleYear
Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis.
    Circulation, 2013, Feb-19, Volume: 127, Issue:7

    Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly.. We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion.. Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.

    Topics: Adrenomedullin; Age Factors; Aging; Animals; Antigens, CD; Arteriosclerosis; Cadherins; Disease Models, Animal; Edema; Endothelium, Vascular; Fibrosis; Glomerulosclerosis, Focal Segmental; Homeostasis; Kidney; Leukocytes; Mice; Mice, Knockout; Oxidative Stress; Receptor Activity-Modifying Protein 2; Vasculitis

2013
Protective effects of endogenous adrenomedullin on cardiac hypertrophy, fibrosis, and renal damage.
    Circulation, 2004, Apr-13, Volume: 109, Issue:14

    Adrenomedullin (AM) is a novel vasodilating peptide thought to have important effects on cardiovascular function. The aim of this study was to assess the activity of endogenous AM in the cardiovascular system using AM knockout mice.. Mice heterozygous for an AM-null mutation (AM+/-) and their wild-type littermates were subjected to aortic constriction or angiotensin II (Ang II) infusion. The resultant cardiovascular stress led to increases in heart weight/body weight ratios, left ventricular wall thickness, and perivascular fibrosis, as well as expression of genes encoding angiotensinogen, ACE, transforming growth factor-beta, collagen type I, brain natriuretic peptide, and c-fos. In addition, renal damage characterized by decreased creatinine clearance with glomerular sclerosis was noted. In all cases, the effects were significantly more pronounced in AM+/- mice. Hearts from adult mice subjected to aortic constriction showed enhanced extracellular signal-regulated kinase (ERK) activation, as did cardiac myocytes from neonates treated acutely with Ang II. Again the effect was more pronounced in AM+/- mice, which showed increases in cardiac myocyte size, protein synthesis, and fibroblast proliferation. ERK activation was suppressed by protein kinase C inhibition to a greater degree in AM+/- myocytes. In addition, treatment of cardiac myocytes with recombinant AM suppressed Ang II-induced ERK activation via a protein kinase A-dependent pathway.. Endogenous AM exerts a protective effect against stress-induced cardiac hypertrophy via protein kinase C- and protein kinase A-dependent regulation of ERK activation. AM may thus represent a useful new tool for the treatment of cardiovascular disease.

    Topics: Adrenomedullin; Angiotensin II; Angiotensinogen; Animals; Aorta, Abdominal; Cardiomegaly; Collagen Type I; Constriction; Enzyme Activation; Enzyme Inhibitors; Fibroblasts; Fibrosis; Gene Expression Regulation; Genes, fos; Genes, Lethal; Glomerulosclerosis, Focal Segmental; Heterozygote; Male; MAP Kinase Signaling System; Mice; Mice, Knockout; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocytes, Cardiac; Natriuretic Peptide, Brain; Peptides; Peptidyl-Dipeptidase A; Protein Kinase C; Proto-Oncogene Proteins c-fos; Transforming Growth Factor beta; Ventricular Remodeling

2004
Adrenomedullin gene delivery attenuates renal damage and cardiac hypertrophy in Goldblatt hypertensive rats.
    American journal of physiology. Renal physiology, 2001, Volume: 280, Issue:6

    Adrenomedullin (AM) is a potent vasodilator and natriuretic peptide that plays an important role in cardiovascular function. In this study, we employed a somatic gene delivery approach to explore its potential protective role in renovascular hypertension. A single tail vein injection of adenovirus harboring the human AM gene significantly blunted a blood pressure increase that lasted for more than 3 wk in two-kidney one-clip (2K1C) hypertensive rats. The expression of human AM mRNA was detected in the kidney, adrenal gland, heart, lung, and liver, and immunoreactive human AM was detected in the plasma and urine of 2K1C rats after human AM gene delivery. A maximal blood pressure difference of 28 mmHg was observed 10 days after AM gene delivery, compared with that in rats injected with the control virus carrying the LacZ gene. Human AM gene delivery significantly attenuated increases in the ratio of left ventricular weight to heart weight, cardiomyocyte diameter, and fibrosis in the heart, as well as glomerular sclerosis, tubular injuries, and protein casts in the kidney. The beneficial effects of AM gene delivery were accompanied by increased urinary cAMP levels, indicating activation of AM receptors. These findings provide new insights into the role of AM in renovascular hypertension and may have significance in therapeutic applications in cardiovascular diseases.

    Topics: Adenoviridae; Adrenomedullin; Animals; Blood Pressure; Cardiomegaly; Disease Models, Animal; Fibrosis; Gene Expression; Gene Transfer Techniques; Genetic Therapy; Glomerulosclerosis, Focal Segmental; Humans; Hypertension, Renovascular; Male; Organ Size; Peptides; Radioimmunoassay; Rats; Rats, Wistar; RNA, Messenger

2001
Plasma and urinary levels of adrenomedullin in chronic glomerulonephritis patients with proteinuria.
    Nephron, 1998, Volume: 80, Issue:2

    In this study, we measured levels of plasma and urinary adrenomedullin (AM) in 37 patients with chronic glomerulonephritis including minimal change nephrotic syndrome, focal segmental glomerulosclerosis or membranous nephropathy that can induce severe proteinuria. Thirty-nine healthy volunteers were enrolled as controls. Plasma and urinary AM levels were measured by an AM-specific radioimmunoassay. Plasma AM concentrations were higher and urinary AM levels were lower in patients with chronic glomerulonephritis than in healthy volunteers. Patients were divided into two groups according to urinary excretion of protein for 24 h (UPro, g/day) which reflects the disease activity or glomerular damage of the glomerulonephritis (group I: Upro < 1, group II: Upro >= 1). Plasma AM levels positively and urinary AM-levels negatively correlated with the degree of proteinuria. These results suggest that plasma and urinary AM levels in patients with chronic glomerulonephritis reflect the disease activity or glomerular damage represented by the degree of proteinuria.

    Topics: Adrenomedullin; Adult; Aged; Analysis of Variance; Case-Control Studies; Glomerulonephritis; Glomerulonephritis, Membranous; Glomerulosclerosis, Focal Segmental; Humans; Middle Aged; Nephrotic Syndrome; Peptides; Proteinuria; Vasodilator Agents

1998