adrenomedullin has been researched along with Colitis* in 10 studies
10 other study(ies) available for adrenomedullin and Colitis
Article | Year |
---|---|
Adrenomedullin alleviates mucosal injury in experimental colitis and increases claudin-4 expression in the colonic epithelium.
Adrenomedullin (AM) is a peptide with pleiotropic physiological functions that attenuates intestinal mucosal inflammation. However, the mechanism underpinning mucosal protection by AM is not fully understood, and its effect on intestinal epithelial cells remains unclear. Here, we investigated the effects of AM on junctional molecules in primary-cultured murine intestinal epithelial cells and discovered that AM upregulates claudin-4 expression. In a mouse model of dextran sulfate sodium-induced colitis, AM administration also enhanced claudin-4 expression and accelerated mucosal regeneration. Furthermore, AM reversed TNFα-mediated downregulation of claudin-4 and loss of cell-cell adhesion of the HCT116 human intestinal epithelial cell line in vitro. These results indicate that AM may enhance intestinal epithelial integrity by upregulating claudin-4 expression. Topics: Adrenomedullin; Animals; Claudin-4; Colitis; Epithelium; Humans; Mice | 2023 |
Developments of human adrenomedullin-IgG1 Fc fusion proteins.
Human adrenomedullin (hAM) is a hypotensive peptide hormone that exerts powerful anti-inflammatory effects. However, treatment required continuous administration of hAM, as the half-life of native hAM is quite short in blood. To resolve this problem, we designed two kinds of human IgG1 Fc fusion proteins containing either full-length hAM (IgG1-AM) or hAM residues 6-52 [IgG1-AM (6-52)]. A DNA construct was constructed by connecting DNA sequences encoding hAM and the IgG1 Fc region with a DNA sequence encoding a (GGGGS)3 linker. The molecular weights of IgG1-AM and IgG1-AM (6-52) were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. By protein sequencing, the N-terminal sequence of both recombinant AM-Fc fusions showed the expected human IgG1 sequence. Sufficient concentrations of both AM-Fc fusions were observed in blood 2 days after a single subcutaneous administration. IgG1-AM and IgG1-AM (6-52) stimulated cAMP production in human embryonic kidney-293 cells stably expressing the AM1 receptor. The activity of IgG1-AM (6-52) was higher than that of IgG1-AM. Treatment with IgG1-AM (6-52) inhibited blood pressure increase in spontaneously hypertensive rats. In addition, IgG1-AM (6-52) reduced total inflammation scores in the dextran sulfate sodium colitis model. Therefore, AM-IgG1 Fc fusions represent potential novel therapeutic agents. Topics: Adrenomedullin; Animals; Cells, Cultured; Colitis; Dextran Sulfate; Disease Models, Animal; HEK293 Cells; Humans; Immunoglobulin Fc Fragments; Immunoglobulin G; Inflammation; Male; Protein Folding; Rats; Rats, Inbred SHR; Rats, Wistar; Recombinant Proteins | 2019 |
Small molecules related to adrenomedullin reduce tumor burden in a mouse model of colitis-associated colon cancer.
To investigate the contribution of adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), to the progression and potential treatment of colon cancer we studied the effects of four small molecules (SM) related to AM and PAMP on a mouse model of colon cancer. For each SM, four experimental groups of male mice were used: (i) Control group; (ii) SM group; (iii) DSS group (injected with azoxymethane [AOM] and drank dextran sulfate sodium [DSS]); and (iv) DSS + SM group (treated with AOM, DSS, and the SM). None of the mice in groups i and ii developed tumors, whereas all mice in groups iii and iv developed colon neoplasias. No significant differences were found among mice treated with PAMP modulators (87877 and 106221). Mice that received the AM negative modulator, 16311, had worse colitis symptoms than their control counterparts, whereas mice injected with the AM positive modulator, 145425, had a lower number of tumors than their controls. SM 145425 regulated the expression of proliferation marker Lgr5 and had an impact on microbiota, preventing the DSS-elicited increase of the Bacteroides/Prevotella ratio. These results suggest that treatment with AM or with positive modulator SMs may represent a novel strategy for colon cancer. Topics: Adrenomedullin; Animals; Antineoplastic Agents; Azoxymethane; Cluster Analysis; Colitis; Colon; Colonic Neoplasms; Disease Models, Animal; Disease Progression; Gastrointestinal Agents; Mice | 2017 |
Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization.
In intact mucosal tissues, epithelial cells are anatomically positioned in proximity to a number of subepithelial cell types, including endothelia. A number of recent studies have suggested that imbalances between energy supply and demand can result in "inflammatory hypoxia." Given these associations, we hypothesized that endothelial-derived, hypoxia-inducible mediators might influence epithelial function. Guided by cDNA microarray analysis of human microvascular endothelial cells (HMEC-1 line) subjected to hypoxia (pO(2) 20 torr, 8 h), we identified adrenomedullin (ADM) as a prominent hypoxia-inducible factor (HIF) that acts on epithelial cells through cell surface receptors. We assessed the functional ability for exogenous ADM to signal in human intestinal Caco2 cells in vitro by demonstrating a dose-dependent induction of Erk1/2phosphorylation. Further analysis revealed that ADM deneddylates cullin-2 (Cul2), whose action has been demonstrated to control the activity of HIF. Caco2 cells stably expressing a hypoxic response element (HRE)-driven luciferase promoter confirmed that ADM activates the HIF signaling pathway. Extensions of these studies revealed an increase in canonical HIF-1-dependent genes following stimulation with ADM. To define physiological relevance, we investigated the effect of ADM in a DSS model of murine colitis. Administration of ADM resulted in reduced inflammatory indices and less severe histological inflammation compared to vehicle controls. Analysis of tissue and serum cytokines showed a marked and significant inhibition of colitis-associated TNF-α, IL-1β, and KC. Analysis of circulating ADM demonstrated an increase in serum ADM in murine models of colitis. Taken together, these results identify ADM as an endogenously generated vascular mediator that functions as a mucosal protective factor through fine tuning of HIF activity. Topics: Adrenomedullin; Animals; Caco-2 Cells; Cell Line; Colitis; Dextran Sulfate; Endothelial Cells; Epithelial Cells; Gene Expression Regulation; Humans; Hypoxia-Inducible Factor 1; Inflammation; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Oxygen Consumption; Receptors, Adrenomedullin; Signal Transduction | 2011 |
Impact of adrenomedullin on dextran sulfate sodium-induced inflammatory colitis in mice: insights from in vitro and in vivo experimental studies.
Although adrenomedullin (AM) is known to ameliorate inflammatory processes, few data exist regarding the effect of AM on inflammatory colitis. Therefore, we examined the effect of AM on inflammatory response in vitro and in vivo colitis model.. In mice experimental colitis induced by 3% dextran sulfate sodium (DSS) in drinking water for 7 days, AM with 225-900 μg/kg in 0.5 ml of saline or saline alone were given intraperitoneally once a day. In the in vitro experiment, we determined the cytokine response in THP-1 cell activated by lipopolysaccharide with or without AM of 10 nM. Additionally, we performed wound healing assay in Caco-2 cell interfered by DSS with or without AM of 100 nM.. In the colitis model, AM significantly reduced the disease activity index, histological score, and local production of inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in accordance with reduction of serum amyloid A levels. Secretion of TNF-α in lipopolysaccharide-stimulated THP-1 cells was significantly reduced in the presence of AM. The distance of wound healing interfered by 0.25% DSS was significantly improved in the presence of AM of 100 nM.. These results demonstrate that AM could ameliorate DSS-induced experimental colitis possibly through suppression of systemic and local production of cytokines such as TNF-α, associated with acceleration of ulcer reepithelialization and colon tissue regeneration. Topics: Adrenomedullin; Animals; Body Weight; Cell Line; Cell Movement; Colitis; Colon; Cytokines; Dextran Sulfate; Epithelium; Humans; Inflammation; Inflammation Mediators; Male; Mice; Mice, Inbred BALB C; Peroxidase; Serum Amyloid A Protein; Ulcer; Up-Regulation | 2011 |
Daikenchuto (TU-100) ameliorates colon microvascular dysfunction via endogenous adrenomedullin in Crohn's disease rat model.
Daikenchuto (TU-100), a traditional Japanese medicine, has been reported to up-regulate the adrenomedullin (ADM)/calcitonin gene-related peptide (CGRP) system, which is involved in intestinal vasodilatation. The microvascular dysfunction of the intestine in Crohn's disease (CD), due to down-regulation of the ADM/CGRP system, is etiologically related to the recurrence of CD. Therefore, we investigated the vasodilatory effect of TU-100 in a CD rat model.. Colitis was induced by the rectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. Laser Doppler blood flowmetry was used to measure colonic blood flow. ADM, CGRP, and their receptors in the ischemic colon were measured by reverse transcription polymerase chain reaction (RT-PCR) and enzyme immunoassays. Additionally, we determined whether the intestinal epithelial cell line IEC-6 released ADM in response to TU-100.. TU-100 increased blood flow in ischemic segments of the colon but not in hyperemic segments. Pretreatment with an antibody to ADM abolished the vasodilatory effect of TU-100. CGRP levels and βCGRP mRNA expression were decreased in the ischemic colon, while protein and mRNA levels of ADM were unchanged. Hydroxy α-sanshool, the main constituent of TU-100, was the most active component in improving blood flow. Additionally, both TU-100 and hydroxy α-sanshool enhanced the release of ADM from IEC-6 cells.. In the ischemic colon, endogenous βCGRP, but not ADM, was decreased. Thus, it was concluded that TU-100 ameliorated microvascular dysfunction by the up-regulation of endogenous ADM in the CD rat model. TU-100 may be a possible therapeutic agent for gastrointestinal ischemia-related diseases including CD. Topics: Adrenomedullin; Amides; Animals; Calcitonin Gene-Related Peptide; Cell Line; Colitis; Colon; Crohn Disease; Disease Models, Animal; Intestinal Mucosa; Male; Microvessels; Panax; Plant Extracts; Rats; Rats, Sprague-Dawley; RNA, Messenger; Trinitrobenzenesulfonic Acid; Up-Regulation; Vasodilation; Zanthoxylum; Zingiberaceae | 2011 |
Vascular contribution of adrenomedullin to microcirculatory improvement in experimental colitis.
The effect of adrenomedullin (AM), a peptide that has demonstrated vasodilatory activity, was studied in the colon and small mesenteric arteries of rats in a chronic model of inflammatory bowel disease. AM (50 ng/kg/day) was administered i.p. daily, starting 24h after trinitrobenzensulfonic acid (TNBS, 30 mg) instillation. After 14 days, rats were sacrificed, colons were macroscopically analyzed and biochemical parameters (myeloperoxidase activity, cytokines, cyclooxygenase-2 (COX-2) as well as inducible nitric oxide synthase (iNOS) expression) were determined. Vascular function of small mesenteric arteries was assessed by addition of phenylephrine (10⁻⁸ to 10⁻⁴ mol/L) and participation of COX and NOS pathways was also evaluated by using different inhibitors: indomethacin, NS-398, L-NNA, and 1400 w. Chronic AM treatment significantly reduced colonic macroscopic damage and inflammation markers. TNBS instillation induced COX-2 and iNOS expressions in colon and small mesenteric arteries; AM treatment decreased COX-2 expression only in microvessels from rats with colitis. An attenuation of phenylephrine-induced contraction was detected in small mesenteric arteries from both TNBS and AM-treated rats. COX and NOS inhibitors altered the contractile ability of phenylephrine in small mesenteric arteries from TNBS rats, suggesting the involvement of COX-2 and iNOS derived factors in the deleterious effect of TNBS on vascular reactivity; AM administration was able to reduce such alteration. Finally, treatment with the peptide significantly reduced colonic nitric oxide (NO) levels, without affecting plasma concentration. In conclusion, AM showed beneficial effects in the restoration of vascular function through the regulation of vasoactive products derived from COX-2 and iNOS. Topics: Adrenomedullin; Animals; Biomarkers; Colitis; Cyclooxygenase 2; Disease Models, Animal; Gene Expression Regulation, Enzymologic; In Vitro Techniques; Inflammatory Bowel Diseases; Male; Mesenteric Arteries; Microcirculation; Nitrates; Nitric Oxide; Nitric Oxide Synthase Type II; Nitrites; Phenylephrine; Rats; Rats, Wistar; Vasoconstriction | 2011 |
Anti-colitis and -adhesion effects of daikenchuto via endogenous adrenomedullin enhancement in Crohn's disease mouse model.
Adrenomedullin (ADM) is a member of the calcitonin family of regulatory peptides, and is reported to have anti-inflammatory effects in animal models of Crohn's disease (CD). We investigated the therapeutic effects of daikenchuto (DKT), an extracted Japanese herbal medicine, on the regulation of endogenous ADM in the gastrointestinal tract in a CD mouse model.. Colitis was induced in mice by intrarectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS); afterwards, DKT was given orally. Colonic damage was assessed on day 3 by macroscopic and microscopic observation, enzyme immunoassays of proinflammatory cytokines in the colonic mucosa, and serum amyloid A (SAA), a hepatic acute-phase protein. To determine the involvement of ADM, an ADM antagonist was instilled intrarectally before DKT administration. The effect of DKT on ADM production by intestinal epithelial cells was evaluated by enzyme immunoassay and real-time PCR.. DKT significantly attenuated mucosal damage and colonic inflammatory adhesions, and inhibited elevations of SAA in plasma and the proinflammatory cytokines TNFα and IFNγ in the colon. Small and large intestinal epithelial cells produced higher levels of ADM after DKT stimulation. A DKT-treated IEC-6 cell line also showed enhanced ADM production at protein and mRNA levels. Abolition of this effect by pretreatment with an ADM antagonist shows that DKT appears to exert its anti-colitis effect via up-regulation of endogenous ADM in the intestinal tract.. DKT exerts beneficial effects in a CD mouse model through endogenous release and production of ADM. Endogenous ADM may be a therapeutic target for CD. Topics: Adrenomedullin; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Adhesion; Cell Line; Colitis; Colon; Crohn Disease; Cytokines; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Flow Cytometry; Gene Expression; Immunohistochemistry; Interferon-gamma; Intestinal Mucosa; Male; Mice; Mice, Inbred BALB C; Panax; Phytotherapy; Plant Extracts; Rats; Serum Amyloid A Protein; Treatment Outcome; Trinitrobenzenesulfonic Acid; Tumor Necrosis Factor-alpha; Up-Regulation; Zanthoxylum; Zingiberaceae | 2010 |
Acute and chronic responses associated with adrenomedullin administration in experimental colitis.
Adrenomedullin (AM) is a 52 amino acid peptide and member of the calcitonin gene-related peptide (CGRP) super family. Given that AM has emerged as a potential immuno-regulatory and anti-inflammatory agent in various experimental models, this study has deepened into its possible therapeutic effect in intestinal inflammation analyzing the responses in both acute and chronic (14 and 21 days) phases of TNBS-induced colitis in rats. In the acute model, AM treatment reduced the incidence of diarrhea and the severity of colonic damage, and improved the survival rate at the three doses assayed (50, 100, and 200ng/kg animal). AM administration was able to reduce the early production of TNF-alpha and collaborated to maintaining basal levels of IFN-gamma and IL-10. In the chronic studies the peptide attenuated the extent of the damage with lesser incidence of weight loss and diarrhea (50 and 100ng/kg animal). Cellular neutrophil infiltration, with the subsequent increase in myeloperoxidase (MPO) levels caused by TNBS, was reduced after chronic AM administration. The peptide played a role in the evolution of Th1/Th2 cytokines balance and chronic disease recuperation: levels of proinflammatory TNF-alpha and IFN-gamma decreased and anti-inflammatory IL-10 increased significantly. Cyclooxygenase-2 (COX-2) and nitric oxide synthase (iNOS) protein expression were not modified by AM administration, although a reduction of nitric oxide (NO) production could be detected in the chronic model. These results support a role of AM as an anti-inflammatory factor with beneficial effects in intestinal inflammatory colitis. Topics: Acute Disease; Adrenomedullin; Animals; Anti-Inflammatory Agents; Chronic Disease; Colitis; Colon; Female; Interferon-gamma; Interleukin-10; Male; Peroxidase; Rats; Rats, Wistar; Trinitrobenzenesulfonic Acid; Tumor Necrosis Factor-alpha | 2008 |
Effect of adrenomedullin administration on acetic acid-induced colitis in rats.
Adrenomedullin (AM) administered intracolonically ameliorated the severity of acetic acid-induced colonic ulceration in rats. Ulcers were induced by subserosal injection of acetic acid into the colon. AM-treated group was administered 0.25-1.0 microg of AM in 0.5 ml of saline intracolonically once a day; the control group received only saline. AM administration dose-dependently and significantly reduced the size of the ulcerative lesions, the associated edema, and the infiltration of the affected area by inflammatory cells. AM also reduced tissue levels of interleukin-6, but not interferon-gamma. AM reduces the severity of acetic acid-induced colitis in rats, probably by inhibiting the production and/or release of Th-2 cell-derived factors such as interleukin-6. Topics: Acetic Acid; Adrenomedullin; Animals; Anti-Inflammatory Agents, Non-Steroidal; Colitis; Indicators and Reagents; Inflammation; Interferon-gamma; Interleukin-6; Male; Peptides; Rats; Rats, Wistar; Th2 Cells | 2005 |