adrenomedullin and Brain-Neoplasms

adrenomedullin has been researched along with Brain-Neoplasms* in 14 studies

Reviews

2 review(s) available for adrenomedullin and Brain-Neoplasms

ArticleYear
Adrenomedullin and nitric oxide: implications for the etiology and treatment of primary brain tumors.
    CNS & neurological disorders drug targets, 2011, Volume: 10, Issue:7

    Gliomas, defined as tumors of glial origin, represent between 2-5 percent of all adult cancer and comprise the majority of primary brain tumors. Infiltrating gliomas, with an incidence of more than 40 percent of brain tumors, are the most common and destructive primary brain tumors for which conventional therapies have not significantly improved patient outcome. In fact, patients suffering from malignant gliomas have poor prognoses and the majority have local tumor recurrence after treatment. Tumor growth and spread of tumor cells depend basically upon angiogenesis and on functional abnormalities of tumor cells in the control of apoptosis, as they are paradigmatic for their intrinsic resistance to multiple pro-apoptotic stimuli. Therefore, promising strategies for treatment of brain cancer would be directed to appropriate neutralization of angiogenesis and sensibilization of cancer cells to undergo apoptosis. However, despite advances in this field, high-grade gliomas remain incurable with survival often measured in months. Therefore there is a need to discover new and more potent cocktails of drugs to target the key molecular pathways involved in glioma angiogenesis and apoptosis. This review deals with the effects of two groups of molecules closely linked to neural tissue, which have been implicated in brain cancer: nitric oxide and peptides of the adrenomedullin family. These molecules exert vasodilatory and proangiogenic actions. Adrenomedullin also has antiapoptotic functions at appropriate concentrations. The inhibition of these functions, in the case of cancer, may provide new pharmacological strategies in the treatment of this disease.

    Topics: Adrenomedullin; Animals; Antineoplastic Agents; Brain Neoplasms; Enzyme Inhibitors; Glioma; Humans; Nitric Oxide; Nitric Oxide Donors; Treatment Outcome

2011
[Role of adrenomedullin in glioblastomas growth].
    Bulletin du cancer, 2005, Volume: 92, Issue:4

    Glioblastoma multiforme is the most malignant of the primary brain tumors and is almost always fatal. The treatment strategies for this disease have not changed appreciably for many years and most are based on a limited understanding of the biology of the disease. Growth factors are potential targets for therapeutic strategies because they are essential for tumor growth and progression. Adrenomedullin (AM) is a multifunctional regulatory peptide with mitogenic and angiogenic capabilities among others. Real-time quantitative reverse transcriptase-polymerase chain reaction analysis showed that AM mRNA was correlated to the tumor type and grade, with high expression in all glioblastomas analysed, whereas a low expression was found in anaplastic astrocytomas and barely detectable levels in low-grade astrocytomas and oligodendriogliomas. The correlation of AM expression to the grade of glioma support the hypothesis that AM may participate in the progression of gliomas. We demonstrate that AM may function as an autocrine/paracrine growth factor for glioblastoma cells. The data demonstrated that the anti-AM antibody significantly suppress the growth of established glioblastoma xenografts. The action of AM is specific and is mediated by the calcitonin receptor-like receptor/receptor activity-modifying protein-2 and -3 (CRLR/RAMP2, CRLR/RAMP3). Furthermore, the proangiogenic action of AM on cultured endothelial cells via CRLR/RAMP2 and CRLR/RAMP3 receptors may translate in vivo into enhanced neovascularization and therefore identify AM and its receptors acting as potential new targets for antiangiogenic therapies.

    Topics: Adrenomedullin; Angiogenic Proteins; Astrocytoma; Brain Neoplasms; Cell Hypoxia; Glioblastoma; Humans; Neoplasm Invasiveness; Neoplasm Proteins; Neovascularization, Pathologic; Neuropeptides; Oligodendroglioma; Peptides

2005

Other Studies

12 other study(ies) available for adrenomedullin and Brain-Neoplasms

ArticleYear
miR-1297 sensitizes glioma cells to temozolomide (TMZ) treatment through targeting adrenomedullin (ADM).
    Journal of translational medicine, 2022, 10-01, Volume: 20, Issue:1

    Gliomas account for about 80% of all malignant brain and other central nervous system (CNS) tumors. Temozolomide (TMZ) resistance represents a major treatment hurdle. Adrenomedullin (ADM) has been reported to induce glioblastoma cell growth.. Cell viability was measured using the CCK-8 assay. The apoptosis analysis was performed using the Annexin V-FITC Apoptosis Detection Kit. The mitochondrial membrane potential was determined by JC-1 staining. A nude mouse tumor assay was used to detect tumor formation. Hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining were performed in tissue sections. Activation of Akt and Erk and expression of apoptosis-related proteins were determined by immunoblotting.. ADM expression has been found upregulated in TMZ -resistant glioma samples based on bioinformatics and experimental analyses. Knocking down ADM in glioma cells enhanced the suppressive effects of TMZ on glioma cell viability, promotive effects on cell apoptosis, and inhibitory effects on mitochondrial membrane potential. Moreover, ADM knockdown also enhanced TMZ effects on Bax/Bcl-2, Akt phosphorylation, and Erk1/2 phosphorylation. Bioinformatics and experimental investigation indicated that miR-1297 directly targeted ADM and inhibited ADM expression. miR-1297 overexpression exerted similar effects to ADM knockdown on TMZ-treated glioma cells. More importantly, under TMZ treatment, inhibition of miR-1297 attenuated TMZ treatment on glioma cells; ADM knockdown partially attenuated the effects of miR-1297 inhibition on TMZ-treated glioma cells.. miR-1297 sensitizes glioma cells to TMZ treatment through targeting ADM. The Bax/Bcl-2, Akt, and Erk1/2 signaling pathways, as well as mitochondrial functions might be involved.

    Topics: Adrenomedullin; Animals; Antineoplastic Agents, Alkylating; Apoptosis; bcl-2-Associated X Protein; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Eosine Yellowish-(YS); Glioma; Hematoxylin; Mice; MicroRNAs; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Temozolomide

2022
Inhibitor of Apoptosis Proteins Determines Glioblastoma Stem-Like Cell Fate in an Oxygen-Dependent Manner.
    Stem cells (Dayton, Ohio), 2019, Volume: 37, Issue:6

    In glioblastomas, apoptosis inhibitor proteins (IAPs) are involved in apoptotic and nonapoptotic processes. We previously showed that IAP inhibition induced a loss of stemness and glioblastoma stem cells differentiation by activating nuclear factor-κB under normoxic conditions. Hypoxia has been shown to modulate drug efficacy. Here, we investigated how IAPs participate in glioblastoma stem-like cell maintenance and fate under hypoxia. We showed that in a hypoxic environment, IAPs inhibition by GDC-0152, a small-molecule IAPs inhibitor, triggered stem-like cell apoptosis and decreased proliferation in four human glioblastoma cell lines. We set up a three-dimensional glioblastoma spheroid model in which time-of-flight secondary ion mass spectrometry analyses revealed a decrease in oxygen levels between the periphery and core. We observed low proliferative and apoptotic cells located close to the hypoxic core of the spheres and glial fibrillary acidic protein

    Topics: Adaptor Proteins, Signal Transducing; Adrenomedullin; Apoptosis; Baculoviral IAP Repeat-Containing 3 Protein; Brain Neoplasms; Carbonic Anhydrase IX; Cell Differentiation; Cell Hypoxia; Cell Line, Tumor; Cell Proliferation; Cyclohexanes; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Inhibitor of Apoptosis Proteins; Neoplasm Proteins; Neoplastic Stem Cells; Oxygen; Pyrroles; Signal Transduction; Spheroids, Cellular; Tissue Culture Techniques; X-Linked Inhibitor of Apoptosis Protein

2019
Interleukin-1β promotes hypoxia-induced apoptosis of glioblastoma cells by inhibiting hypoxia-inducible factor-1 mediated adrenomedullin production.
    Cell death & disease, 2014, Jan-23, Volume: 5

    Glioblastoma is the most common brain tumor in adults. Advanced glioblastomas normally contain hypoxic areas. The primary cellular responses to hypoxia are generally mediated by the transcription factor hypoxia-inducible factor 1 (HIF-1). Interleukin-1β (IL-1β) is a cytokine that is often present in the glioblastoma microenvironment and is known to be a modulator of glioblastoma progression. However, the role of IL-1β in regulating glioblastoma progression is still controversial. In this study, we found that in the human glioblastoma cell lines U87MG and U138MG, IL-1β inhibits the transactivation activity of HIF-1 by promoting the ubiquitin-independent proteasomal degradation of the oxygen-labile α-subunit of HIF-1 and downregulates the expression of the HIF-1 target gene adrenomedullin (AM). Apoptosis and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assays showed that AM protects glioblastoma cells against hypoxia-induced apoptosis in a dose-dependent manner. Thus, in the presence of IL-1β more glioblastoma cells undergo hypoxia-induced cell death. Our findings suggest that when estimating the influence of IL-1β on the prognosis of glioblastoma patients, factors such as the degree of hypoxia, the expression levels of HIF-1 and AM should be taken into consideration. For the AM-producing glioblastoma cells, IL-1β represents a potent apoptosis inducer.

    Topics: Adrenomedullin; Apoptosis; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Humans; Hypoxia; Hypoxia-Inducible Factor 1; Interleukin-1beta; Oxygen

2014
Transcriptional regulation of adrenomedullin by oncostatin M in human astroglioma cells: implications for tumor invasion and migration.
    Scientific reports, 2014, Sep-23, Volume: 4

    Adrenomedullin (ADM), a secretory peptide with multiple functions in physiological to pathological conditions, is upregulated in several human cancers, including brain, breast, colon, prostate, and lung cancer. However, the molecular mechanisms underlying the regulation of ADM expression in cancerous cells are not fully understood. Here, we report that oncostatin M (OSM), a cytokine belonging to the interleukin-6 family, induces ADM expression in astroglioma cells through induction of signal transducer and activator of transcription-3 (STAT-3) phosphorylation, nuclear translocation, and subsequent DNA binding to the ADM promoter. STAT-3 knockdown decreased OSM-mediated expression of ADM, indicating that ADM expression is regulated by STAT-3 in astroglioma cells. Lastly, scratch wound healing assay showed that astroglioma cell migration was significantly enhanced by ADM peptides. These data suggest that aberrant activation of STAT-3, which is observed in malignant brain tumors, may function as one of the key regulators for ADM expression and glioma invasion.

    Topics: Adrenomedullin; Apoptosis; Astrocytoma; Blotting, Western; Brain Neoplasms; Cell Movement; Cell Proliferation; Electrophoretic Mobility Shift Assay; Gene Expression Regulation, Neoplastic; Humans; Neoplasm Invasiveness; Oncostatin M; Phosphorylation; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; STAT3 Transcription Factor; Tumor Cells, Cultured

2014
Adrenomedullin expression and regulation in human glioblastoma, cultured human glioblastoma cell lines and pilocytic astrocytoma.
    European journal of cancer (Oxford, England : 1990), 2011, Volume: 47, Issue:11

    Clinical and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth. Glioblastoma (GBM) and pilocytic astrocytoma (PA), both angiogenic tumours display strong contrast enhancement associated with peripheral oedema in GBM but not in PA indicating differences in vascular permeability in these two types of gliomas. Here we show that expression of adrenomedullin (AM) mRNA is induced in GBM whereas is barely detectable in PA. In situ analysis of tumour specimens undergoing neovascularisation shows that the production of AM is specifically induced in a subset of GBM cells distinguished by their immediate proximity to necrotic foci (presumably hypoxic regions), suggesting a hypoxic induction of AM expression in GBM. Vascular endothelial growth factor (VEGF) mRNA levels are increased in GBM and moderate in PA. Immunohistochemical study showed that cytoplasmic AM, VEGF and HIF-1α nuclear immunoreactivity were recorded in GBM located near large necrotic areas whereas they were not expressed by PA tumour cells. Interestingly, double fluorescence immunostaining demonstrated that 85% of AM immunoreactivity colocalised with VEGF. AM transduces its effects through calcitonin receptor-like receptor/receptor activity modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). Real-time quantitative RT-PCR showed expression of RAMP2, RAMP3 and CLR in PA and GBM, suggesting that AM may function as an autocrine/paracrine growth factor for GBM cells. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify beside VEGF, AM as a potential tumour angiogenesis factor in vivo which constitutes a potential interesting molecular target in GBM treatment.

    Topics: Adrenomedullin; Angiogenesis Inhibitors; Astrocytoma; Brain Neoplasms; Cell Line, Tumor; DNA Primers; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Hypoxia; Immunohistochemistry; In Situ Hybridization; Microscopy, Fluorescence; Neovascularization, Pathologic; Vascular Endothelial Growth Factor A

2011
Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2007, May-01, Volume: 13, Issue:9

    Vascular endothelial growth factor (VEGF) is a potent mediator of vascular permeability. VEGF inhibition reduces edema and tumor burden in some patients with malignant glioma, whereas others show no response. The role of VEGF expression in edema production and the relationship to survival is not well understood.. Using DNA microarray analysis, we examined VEGF and related gene expression in 71 newly diagnosed malignant gliomas and analyzed the relationship to edema and survival.. VEGF expression was predictive of survival in tumors with little or no edema [Cox proportional hazard model, 6.88; 95% confidence interval (95% CI), 2.61-18.1; P<0.0001], but not in tumors with extensive edema. The expression of several proangiogenic genes, including adrenomedullin (correlation coefficient, 0.80), hypoxia-inducible factor-1A (0.51), and angiopoietin-2 (0.44), was correlated with VEGF expression (all with P<0.0001), whereas that of several antiangiogenic genes was inversely correlated. The expression of six genes was increased greater than 3-fold in edematous versus nonedematous tumors in the absence of increased VEGF expression. The most increased, neuronal pentraxin 2 (NPTX2, 7-fold change), was predictive of survival in tumors with the highest levels of edema, in contrast to VEGF (hazard ratio, 2.73; 95% CI, 1.49-5.02; P=0.049). NPTX2 was tightly correlated with expression of the water channel aquaporin-3 (0.74, P<0.0001). These results suggest that there are both VEGF-dependent and VEGF-independent pathways of edema production in gliomas and may explain why edema is not reduced in some patients following anti-VEGF treatment.

    Topics: Adrenomedullin; Angiopoietin-2; Aquaporin 3; Brain Edema; Brain Neoplasms; C-Reactive Protein; Gene Expression; Glioma; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Nerve Tissue Proteins; Oligonucleotide Array Sequence Analysis; Prognosis; Survival; Vascular Endothelial Growth Factor A

2007
Desensitization and re-sensitization of CGRP receptor function in human neuroblastoma SK-N-MC cells.
    European journal of pharmacology, 2007, Dec-22, Volume: 577, Issue:1-3

    Calcitonin gene-related peptide (CGRP) is a highly potent vasodilator known to be involved in many physiological functions within the cardiovascular, gastrointestinal, immune, and nervous systems. This study assessed the desensitization of CGRP receptors by measuring agonist-mediated activation of adenylate cyclase in a model system employing human neuroblastoma-derived SK-N-MC cells. In these cells, we demonstrated that pre-incubation with CGRP (20 nM) induces a rapid desensitization of CGRP signaling (t(1/2)

    Topics: Adrenomedullin; Amyloid; Brain Neoplasms; Calcitonin; Calcitonin Gene-Related Peptide; Calcitonin Gene-Related Peptide Receptor Antagonists; Cell Line, Tumor; Cell Membrane; Colforsin; Cyclic AMP; Cytoskeleton; Data Interpretation, Statistical; Dopamine; Endocytosis; Humans; Iodine Radioisotopes; Islet Amyloid Polypeptide; Kinetics; Neuroblastoma; Receptors, Calcitonin Gene-Related Peptide

2007
PTEN inhibits adrenomedullin expression and function in brain tumor cells.
    Journal of neuro-oncology, 2006, Volume: 79, Issue:2

    Adrenomedullin is a vasoactive peptide that is upregulated in higher-grade gliomas and promotes tumor cell proliferation. Since reduced activity of the anti-oncogene PTEN seems to also correlate with higher tumor grade, this suggests an inverse association between PTEN activity and adrenomedullin expression. PC12 pheochromocytoma and human U251 glioma cell lines were stably transfected with human PTEN or control plasmid. Adrenomedullin expression was analyzed using quantitative PCR and Western blotting. A cell proliferation assay was used to assess adrenomedullin effects on U251 cells overexpressing PTEN. PC12 and U251 cells overexpressing PTEN had 17- and 8-fold decreases in adrenomedullin mRNA levels, respectively, compared to control cells. Cellular and secreted adrenomedullin peptide was similarly reduced. Addition of adrenomedullin to medium of controlled cells induced proliferation, as described previously, but U251 cells overexpressing PTEN did not respond to exogenous adrenomedullin. Further exploration revealed that PTEN also inhibits expression of the gliomas receptor for adrenomedullin, which accounts for this effect. These data were all replicated with an inducible PTEN construct confirming that these effects are not exclusively secondary to chronic overexpression. Given the profound effects of adrenomedullin on tumor cells, this is a novel and previously unidentified mechanism by which alterations in PTEN levels or function may influence tumor growth.

    Topics: Adrenomedullin; Animals; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Down-Regulation; Glioma; Humans; PC12 Cells; Peptides; PTEN Phosphohydrolase; Rats; Receptors, Adrenomedullin; Receptors, Peptide; Transfection

2006
Gene expression of adrenomedullin, leptin, their receptors and neuropeptide Y in hormone-secreting and non-functioning pituitary adenomas, meningiomas and malignant intracranial tumours in humans.
    Neuropathology and applied neurobiology, 2001, Volume: 27, Issue:3

    The aim of this study was to assess human intracranial tumours for their gene expression pattern of the vasoactive peptide adrenomedullin (AM), its receptor (AM-R) and leptin, which exerts multiple biological effects including proliferation and angiogenesis via the leptin receptor (OB-Rb). Gene activity of neuropeptide Y (NPY) was monitored additionally. We investigated whether there was a characteristic gene expression pattern of AM and leptin in different intracranial tumours, depending on their proliferation activity and biological behaviour. We investigated 35 non-functioning pituitary adenomas (including eight null cell, four silent plurihormonal, 23 silent gonadotroph adenomas), seven somatotropinomas, seven prolactinomas, eight meningiomas, five astrocytomas, two glioblastoma multiformes and unaffected temporal lobe (n = 8). Quantitative reverse transcriptase-polymerase chain reaction (TaqMan RT-PCR) was performed. AM mRNA was detectable in all tumour specimens. AM/GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ratio was significantly higher in somatotropinomas, as was AM/CD31 ratio in prolactinomas, compared with inactive adenomas (P < 0.05). AM-R mRNA was found in all tumour subgroups in small quantities but, in general, higher in tumours than in temporal lobe tissue, respectively. AM-R/CD31 ratio was significantly higher in prolactinomas than in inactive adenomas (P < 0.05). Leptin was detectable in very low quantities in each subgroup. OB-Rb gene expression was found in all tumour subgroups, OB-Rb/GAPDH ratio was highest for meningiomas (P < 0.0001, compared with temporal lobe). NPY mRNA was detectable in temporal lobe in higher quantities than in tumours (P < 0.0001), and almost undetectable in prolactinomas and astrocytomas. Our data demonstrate that AM and AM-R, NPY, as well as leptin and OB-Rb, are expressed in various intracranial tumours in humans but their particular function has to be elucidated further. At present, there is no evidence for a cross-talk on transcriptional level between the peptidergic vasodilative system AM and the putative angiogenic and proliferation affecting factor leptin.

    Topics: Adenoma; Adrenomedullin; Adult; Aged; Brain Neoplasms; Carrier Proteins; Female; Gene Expression; Hormones; Humans; Leptin; Male; Middle Aged; Neuropeptide Y; Neuropeptides; Peptides; Pituitary Neoplasms; Receptors, Adrenomedullin; Receptors, Cell Surface; Receptors, Leptin; Receptors, Peptide

2001
Production of cAMP by adrenomedullin in human oligodendroglial cell line KG1C: comparison with calcitonin gene-related peptide and amylin.
    Brain research. Molecular brain research, 2001, Dec-16, Volume: 97, Issue:1

    The actions and the presence of adrenomedullin (AM) were investigated in cultured human oligodendroglial cell line KG1C. AM and AM mRNA were detected in KG1C cells by immunohistochemistry and RT-PCR. mRNAs for calcitonin receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMPs) 1, 2 and 3 but not for calcitonin receptors were detected in the cells, while mRNAs for CRLR, calcitonin receptors and all RAMPs were detected in the human cerebellum. Application of AM resulted in time- and concentration-dependent increases in the cAMP level of KG1C cells. Calcitonin gene-related peptide (CGRP) and amylin, peptides structurally related to AM, also increased cAMP. The potencies for the cAMP production of the three peptides were CGRP > or =AM >> amylin with EC(50) of 8, 18, 90 nM, respectively. The responses induced by AM were strongly inhibited by the CGRP(1) receptor antagonist human CGRP(8-37), and inhibited also by the AM receptor antagonist human AM(22-52). In contrast, the responses induced by CGRP or amylin were inhibited only by CGRP(8-37) and not by AM(22-52). The responses induced by all three peptides were unaffected by the amylin receptor antagonist human amylin(8-37). The CGRP(2) receptor agonist human [Cys(Acm)(2,7)]CGRP significantly increased the cAMP level but the increase was smaller than that caused by CGRP. This increase in cAMP was unaffected by CGRP(8-37), AM(22-52) or by amylin(8-37). These results suggest that in KG1C cells, AM increases cAMP through AM and CGRP(1) receptors, whereas CGRP does so through CGRP(1) and CGRP(2) receptors, and amylin exerts its effects through CGRP(1) receptors. Collectively, these findings imply that AM released from oligodendroglial cells may play a role in the regulation of oligodendrocytes via autocrine/paracrine through AM receptors and CGRP(1) receptors.

    Topics: Adrenal Medulla; Adrenomedullin; Amyloid; Animals; Autocrine Communication; Brain Neoplasms; Calcitonin Gene-Related Peptide; Calcitonin Receptor-Like Protein; Cattle; Cells, Cultured; Cyclic AMP; Gene Expression Regulation; Glioma; Humans; Intracellular Signaling Peptides and Proteins; Islet Amyloid Polypeptide; Membrane Proteins; Nerve Tissue Proteins; Oligodendroglia; Paracrine Communication; Peptide Fragments; Peptides; Receptor Activity-Modifying Proteins; Receptors, Calcitonin; Receptors, Calcitonin Gene-Related Peptide; Receptors, Islet Amyloid Polypeptide; Receptors, Peptide; Reverse Transcriptase Polymerase Chain Reaction; Second Messenger Systems; Tumor Cells, Cultured

2001
Induction of adrenomedullin during hypoxia in cultured human glioblastoma cells.
    Journal of neurochemistry, 2000, Volume: 75, Issue:5

    Adrenomedullin is a potent vasodilator peptide originally isolated from pheochromocytoma. Adrenomedullin is produced by various types of cells including neurons and astrocytes. To explore possible pathophysiological roles of adrenomedullin in hypoxic brain, we studied the effects of hypoxia on the expression of adrenomedullin in T98G human glioblastoma cells by radioimmunoassay and northern blot analysis. Expression levels of adrenomedullin mRNA and immunoreactive adrenomedullin levels in the culture medium were increased by hypoxia about six- and about threefold, respectively. Treatment with cobalt chloride increased expression levels of adrenomedullin mRNA about threefold and immunoreactive adrenomedullin levels in the culture medium about threefold in T98G cells. Using actinomycin D, we showed that hypoxia did not cause the stabilization of the adrenomedullin mRNA, suggesting that the increased adrenomedullin mRNA levels in response to hypoxia are caused mainly by increased transcription. Treatment with cycloheximide caused increases in adrenomedullin mRNA levels in both normoxic and hypoxic states, raising the possibility that some protein(s) may act as a suppressor of adrenomedullin gene expression in T98G cells. These findings indicate that adrenomedullin is highly induced during hypoxia in T98G glioblastoma cells and suggest that increased expression of adrenomedullin during hypoxia may be important in the defense against hypoxia or ischemia in the brain.

    Topics: Actins; Adrenomedullin; Blotting, Northern; Brain Neoplasms; Cell Hypoxia; Cobalt; Cycloheximide; Dactinomycin; DNA-Binding Proteins; Gene Expression Regulation; Glioblastoma; Humans; Hypoxia-Inducible Factor 1; Hypoxia-Inducible Factor 1, alpha Subunit; Nuclear Proteins; Nucleic Acid Synthesis Inhibitors; Peptides; Protein Synthesis Inhibitors; Radioimmunoassay; RNA Stability; RNA, Messenger; Transcription Factors; Tumor Cells, Cultured

2000
Production and secretion of adrenomedullin from glial cell tumors and its effects on cAMP production.
    Peptides, 1997, Volume: 18, Issue:8

    The expression of adrenomedullin (ADM) and its mRNA was studied in human glial cell tumors and cultured glioblastoma cell lines, T98G and A172. Northern blot analysis showed that ADM mRNA was expressed in all brain tumors examined (three anaplastic astrocytomas and two glioblastomas multiforme) and in the glioblastoma cell lines. Immunoreactive (IR-) ADM was detectable in these brain tumors by radioimmunoassay (0.31-2.0 pmol/g wet weight), except for one anaplastic astrocytoma. Reverse phase high performance liquid chromatography of the tumor extracts showed a single peak eluting in the position of ADM-(1-52). IR-ADM concentrations in the cultured media of T98G cells were 205.5 +/- 8.4 fmol/10(5) cells/24 h (mean +/- SEM, n = 5). Treatment of T98G cells with interferon gamma or interleukin 1 beta increased the expression levels of ADM mRNA and the IR-ADM concentrations in the cultured media, whereas tumor necrosis factor alpha decreased them in a dose-dependent manner. Treatment with synthetic ADM-(1-52) (10(-8) or 10(-7) mol/l) increased the cAMP concentrations in the cultured media of T98G cells. These findings suggest that ADM is secreted from glial cell tumors and is related to the pathophysiology of these tumors.

    Topics: Adrenomedullin; Adult; Blotting, Northern; Brain Neoplasms; Cyclic AMP; Female; Glioblastoma; Humans; Interferon-gamma; Interleukin-1; Male; Middle Aged; Peptides; Radioimmunoassay; RNA, Messenger; RNA, Neoplasm; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

1997