adp-beta-s has been researched along with Brain-Injuries* in 2 studies
2 other study(ies) available for adp-beta-s and Brain-Injuries
Article | Year |
---|---|
P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo.
ATP acts as a growth factor as well as a toxic agent by stimulating P2 receptors. The P2 receptor-activated signaling cascades mediating cellular growth and cell survival after injury are only incompletely understood. Therefore, the aim of the present study was to identify the role of the phosphoinositide 3 kinase (PI3-K/Akt) and the mitogen-activated protein kinase/extracellular signal regulated protein kinase (MAPK/ERK) pathways in P2Y receptor-mediated astrogliosis after traumatic injury and after microinfusion of ADP beta S (P2Y(1,12,13) receptor agonist) into the rat nucleus accumbens (NAc). Mechanical damage and even more the concomitant treatment with ADP beta S, enhanced P2Y(1) receptor-expression in the NAc, which could be reduced by pretreatment with the P2X/Y receptor antagonist PPADS. Quantitative Western blot analysis indicated a significant increase in phosphorylated (p)Akt and pERK1/2 2 h after ADP beta S-microinjection. Pretreatment with PPADS or wortmannin abolished the up-regulation of pAkt by injury alone or ADP beta S-treatment. The ADP beta S-enhanced expression of the early apoptosis marker active caspase 3 was reduced by PPADS and PD98059, but not by wortmannin. Multiple immunofluorescence labeling indicated a time-dependent expression of pAkt and pMAPK on astrocytes and neurons and additionally the colocalization of pAkt, pMAPK, and active caspase 3 with the P2Y(1) receptor especially at astrocytes. In conclusion, the data show for the first time the involvement of PI3-K/Akt-pathway in processes of injury-induced astroglial proliferation and anti-apoptosis via activation of P2Y(1) receptors in vivo, suggesting specific roles of P2 receptors in glial cell pathophysiology in neurodegenerative diseases. Topics: Adenosine Diphosphate; Androstadienes; Animals; Apoptosis; Astrocytes; Brain Injuries; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Flavonoids; Gliosis; Male; MAP Kinase Signaling System; Nucleus Accumbens; Phosphatidylinositol 3-Kinases; Phosphorylation; Platelet Aggregation Inhibitors; Proto-Oncogene Proteins c-akt; Pyridoxal Phosphate; Rats; Rats, Wistar; Receptors, Purinergic P2; Receptors, Purinergic P2Y1; Thionucleotides; Up-Regulation; Wortmannin | 2009 |
P2Y receptor expression on astrocytes in the nucleus accumbens of rats.
The expression of purinoceptor (P2)Y-subtypes on astrocytes in vivo under physiological conditions and after stab wound injury was investigated. Reverse transcriptase-polymerase chain reaction with specific primers for the receptor-subtypes P2Y1,2,4,6,12 in tissue extracts of the nucleus accumbens of untreated rats revealed the presence of all P2Y receptor mRNAs investigated. Double immunofluorescence visualized with laser scanning microscopy indicated the expression of the P2Y1,4 receptors on glial fibrillary acidic protein (GFAP)-labeled astrocytes under physiological conditions. After stab wound injury the additional expression of the P2Y2 and P2Y6 receptors, and an up-regulation of the P2Y1,4 receptor-labeling on astrocytic cell bodies and/or processes was observed. Astrocytes of cortical, in contrast to accumbal areas exhibited P2Y1,2,4,6 receptor-immunoreactivity (IR) under control conditions, which was up-regulated after stab would injury. Labeling for the P2Y12 receptor was not observed on GFAP-positive cortical and accumbal astrocytes under any of the conditions used. For the first time, the co-localization of different P2 receptor-subtypes (e.g. P2Y1 and P2X3) on the same astrocyte was shown immunocytochemically. The up-regulation of P2Y1 receptor-IR on astrocytes and non-glial cells after mechanical injury could be facilitated by microinfusion of the P2Y1,12,13 receptor agonist adenosine 5'-O-(2-thiodiphosphate) (ADPbetaS). Proliferative changes after ADPbetaS-microinjection were characterized by means of double-staining with antibodies against GFAP and 5-bromo-2'-deoxyuridine. The non-selective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, the P2Y1 receptor antagonist N6-methyl-2'-deoxyadenosine 3',5'-bisphosphate and the P2Y1 receptor-antibody itself inhibited the agonist-induced effects. The data indicate the region-specific presence of P2Y receptors on astrocytes in vivo and their up-regulation after injury as well as the co-localization of P2X and P2Y receptor-subtypes on the same astrocyte. The dominant role of P2Y1 receptors in proliferation and the additional stimulation of non-P2Y1 receptors has been demonstrated in vivo suggesting the involvement of this receptor-type in the gliotic response under physiological and pathological conditions. Topics: Adenosine Diphosphate; Animals; Astrocytes; Brain Injuries; Bromodeoxyuridine; Cell Division; Cerebral Cortex; Fluorescent Antibody Technique; Glial Fibrillary Acidic Protein; Gliosis; Male; Nucleus Accumbens; Protein Subunits; Purinergic P2 Receptor Agonists; Purinergic P2 Receptor Antagonists; Rats; Rats, Wistar; Receptors, Purinergic P2; Receptors, Purinergic P2Y1; RNA, Messenger; Thionucleotides; Up-Regulation | 2004 |