adenosine-kinase and Seizures

adenosine-kinase has been researched along with Seizures* in 23 studies

Reviews

3 review(s) available for adenosine-kinase and Seizures

ArticleYear
Adenosine Dysfunction in Epilepsy and Associated Comorbidities.
    Current drug targets, 2022, Volume: 23, Issue:4

    Epilepsy, a complex neurological syndrome with dominant symptoms and various comorbidities, affects over 70 million people worldwide. Epilepsy-related comorbidities, including cognitive and psychiatric disorders, can impede therapy for epilepsy patients, leading to heavy burdens on patients and society. Adenosine has an anti-epileptic and anticonvulsive function in the brain. Several studies have shown that, through adenosine receptor-dependent and -independent mechanisms, adenosine can influence the development and progression (epileptogenesis) of epilepsy and its associated comorbidities. As the key enzyme for adenosine clearance, adenosine kinase (ADK) can exacerbate epileptic seizures not only by accelerating adenosine clearance, but also by increasing global DNA methylation through the transmethylation pathway. Therefore, adenosine augmentation therapies for epilepsy can have dual functions in the inhibition of epileptic seizures and the prevention of its overall progress. This review has three main purposes. First, we discuss how maladaptive changes in the adenosine pathway affect the development and progress of epilepsy in both receptor-dependent and receptor-independent ways. Second, we highlight the important influence of associated comorbidities on the prognosis of epilepsy and explore the role of adenosine in these comorbidities. Finally, we emphasize the potential of adenosine augmentation therapies in restoring normal adenosine signaling in the epileptic brain. Such treatments could effectively improve the prognosis of patients who are resistant to most antiepileptic drugs (AEDs), and thus bring new challenges and opportunities in the treatment of epilepsy patients.

    Topics: Adenosine; Adenosine Kinase; Anticonvulsants; Epilepsy; Humans; Seizures

2022
The role of adenosine in epilepsy.
    Brain research bulletin, 2019, Volume: 151

    Adenosine is a well-characterized endogenous anticonvulsant and seizure terminator of the brain. Through a combination of adenosine receptor-dependent and -independent mechanisms, adenosine affects seizure generation (ictogenesis), as well as the development of epilepsy and its progression (epileptogenesis). Maladaptive changes in adenosine metabolism, in particular increased expression of the astroglial enzyme adenosine kinase (ADK), play a major role in epileptogenesis. Increased expression of ADK has dual roles in both reducing the inhibitory tone of adenosine in the brain, which consequently reduces the threshold for seizure generation, and also driving an increased flux of methyl-groups through the transmethylation pathway, thereby increasing global DNA methylation. Through these mechanisms, adenosine is uniquely positioned to link metabolism with epigenetic outcome. Therapeutic adenosine augmentation therefore not only holds promise for the suppression of seizures in epilepsy, but moreover the prevention of epilepsy and its progression overall. This review will focus on adenosine-related mechanisms implicated in ictogenesis and epileptogenesis and will discuss therapeutic opportunities and challenges.

    Topics: Adenosine; Adenosine Kinase; Animals; Anticonvulsants; Astrocytes; Brain; DNA Methylation; Epigenesis, Genetic; Epilepsy; Humans; Receptor, Adenosine A1; Seizures

2019
Understanding the basic mechanisms underlying seizures in mesial temporal lobe epilepsy and possible therapeutic targets: a review.
    Journal of neuroscience research, 2012, Volume: 90, Issue:5

    Despite years of research, epilepsy remains a poorly understood disorder. In the past several years, work has been conducted on a variety of projects with the goal of better understanding the pathogenesis and progression of mesial temporal lobe epilepsy (MTLE), in particular, and how to exploit those properties to generate innovative therapies for treatment of refractory epilepsies. This review seeks to give an overview of common morphological and biochemical changes associated with epilepsy and proposed treatments to address those changes. Furthering the understanding of ictogenesis and epileptogenesis remains an important goal for scientists seeking to find more effective treatments for MTLE.

    Topics: Adenosine Kinase; Animals; Comprehension; Cytokines; Disease Models, Animal; Epilepsy, Temporal Lobe; Gliosis; Humans; Mossy Fibers, Hippocampal; Nerve Degeneration; Seizures

2012

Other Studies

20 other study(ies) available for adenosine-kinase and Seizures

ArticleYear
Deep brain stimulation suppresses epileptic seizures in rats via inhibition of adenosine kinase and activation of adenosine A1 receptors.
    CNS neuroscience & therapeutics, 2023, Volume: 29, Issue:9

    Deep brain stimulation (DBS) of the anterior nucleus of the thalamus, is an effective therapy for patients with drug-resistant epilepsy, yet, its mechanism of action remains elusive. Adenosine kinase (ADK), a key negative regulator of adenosine, is a potential modulator of epileptogenesis. DBS has been shown to increase adenosine levels, which may suppress seizures via A1 receptors (A. Control group, SE (status epilepticus) group, SE-DBS group, and SE-sham-DBS group were included in this study. One week after a pilocarpine-induced status epilepticus, rats in the SE-DBS group were treated with DBS for 4 weeks. The rats were monitored by video-EEG. ADK and A. Compared with the SE group and SE-sham-DBS group, DBS could reduce the frequency of spontaneous recurrent seizures (SRS) and the number of interictal epileptic discharges. The DPCPX, an A. The findings indicate that DBS can reduce SRS in epileptic rats via inhibition of ADK and activation of A

    Topics: Adenosine Kinase; Animals; Disease Progression; Epilepsy; Male; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A1; Seizures; Status Epilepticus

2023
Ectopic expression of neuronal adenosine kinase, a biomarker in mesial temporal lobe epilepsy without hippocampal sclerosis.
    Neuropathology and applied neurobiology, 2023, Volume: 49, Issue:4

    Mesial temporal lobe epilepsy without hippocampal sclerosis (no-HS MTLE) refers to those MTLE patients who have neither magnetic resonance imaging (MRI) lesions nor definite pathological evidence of hippocampal sclerosis. They usually have resistance to antiepileptic drugs, difficulties in precise seizure location and poor surgical outcomes. Adenosine is a neuroprotective neuromodulator that acts as a seizure terminator in the brain. The role of adenosine in no-HS MTLE is still unclear. Further research to explore the aetiology and pathogenesis of no-HS MTLE may help to find new therapeutic targets.. In surgically resected hippocampal specimens, we examined the maladaptive changes of the adenosine system of patients with no-HS MTLE. In order to better understand the dysregulation of the adenosine pathway in no-HS MTLE, we developed a rat model based on the induction of focal cortical lesions through a prenatal freeze injury.. We first examined the adenosine system in no-HS MTLE patients who lack hippocampal neuronal loss and found ectopic expression of the astrocytic adenosine metabolising enzyme adenosine kinase (ADK) in hippocampal pyramidal neurons, as well as downregulation of neuronal A. Ectopic expression of neuronal ADK might be a pathological hallmark of no-HS MTLE. Maladaptive changes in adenosine metabolism might be a novel target for therapeutic intervention in no-HS MTLE.

    Topics: Adenosine Kinase; Animals; Biomarkers; Ectopic Gene Expression; Epilepsy, Temporal Lobe; Hippocampal Sclerosis; Hippocampus; Magnetic Resonance Imaging; Rats; Sclerosis; Seizures

2023
Genetic variations of adenosine kinase as predictable biomarkers of efficacy of vagus nerve stimulation in patients with pharmacoresistant epilepsy.
    Journal of neurosurgery, 2022, Mar-01, Volume: 136, Issue:3

    Vagus nerve stimulation (VNS) is an alternative treatment option for individuals with refractory epilepsy, with nearly 40% of patients showing no benefit after VNS and only 6%-8% achieving seizure freedom. It is presently unclear why some patients respond to treatment and others do not. Therefore, identification of biomarkers to predict efficacy of VNS is of utmost importance. The objective of this study was to explore whether genetic variations in genes involved in adenosine kinase (ADK), ecto-5'-nucleotidase (NT5E), and adenosine A1 receptor (A1R) are linked to outcome of VNS in patients with refractory epilepsy.. Thirty single-nucleotide polymorphisms (SNPs), including 9 in genes encoding ADK, 3 in genes encoding NT5E, and 18 in genes encoding A1R, were genotyped in 194 refractory epilepsy patients who underwent VNS. The chi-square test and binary logistic regression were used to determine associations between genetic differences and VNS efficacy.. A significant association between ADK SNPs rs11001109, rs7899674, and rs946185 and seizure reduction with VNS was found. Regardless of sex, age, seizure frequency and type, antiseizure drug use, etiology, and prior surgical history, all patients (10/10 patients [100%]) with minor allele homozygosity at rs11001109 (genotype AA) or rs946185 (AA) achieved > 50% seizure reduction and 4 patients (4/10 [40%]) achieved seizure freedom. VNS therapy demonstrated higher efficacy among carriers of minor allele rs7899674 (CG + GG) (68.3% vs 48.8% for patients with major allele homozygosity).. Homozygous ADK SNPs rs11001109 (AA) and rs946185 (AA), as well as minor allele rs7899674 (CG + GG), may serve as useful biomarkers for prediction of VNS therapy outcome.

    Topics: Adenosine Kinase; Biomarkers; Drug Resistant Epilepsy; Epilepsy; Humans; Polymorphism, Single Nucleotide; Seizures; Treatment Outcome; Vagus Nerve; Vagus Nerve Stimulation

2022
Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP).
    Neuropharmacology, 2021, 02-15, Volume: 184

    Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.

    Topics: Adenosine Kinase; Animals; Kainic Acid; Male; Phrenic Nerve; Predictive Value of Tests; Rats; Rats, Wistar; Seizures; Sudden Unexpected Death in Epilepsy; Tubercidin

2021
Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy.
    Gene therapy, 2014, Volume: 21, Issue:12

    Astrocytes are an attractive cell target for gene therapy, but the validation of new therapeutic candidates is needed. We determined whether adeno-associated viral (AAV) vector-mediated overexpression of glutamine synthetase (GS) or excitatory amino-acid transporter 2 (EAAT2), or expression of microRNA targeting adenosine kinase (miR-ADK) in hippocampal astrocytes in the rat brain could modulate susceptibility to kainate-induced seizures and neuronal cell loss. Transgene expression was found predominantly in astrocytes following direct injection of glial-targeting AAV9 vectors by 3 weeks postinjection. ADK expression in miR-ADK vector-injected rats was reduced by 94-96% and was associated with an ~50% reduction in the duration of kainate-induced seizures and greater protection of dentate hilar neurons but not CA3 neurons compared with miR-control vector-injected rats. In contrast, infusion of AAV-GS and EAAT2 vectors did not afford any protection against seizures or neuronal damage as the level of transcriptional activity of the glial fibrillary acidic promoter was too low to drive any significant increase in transgenic GS or EAAT2 relative to the high endogenous levels of these proteins. Our findings support ADK as a prime therapeutic target for gene therapy of temporal lobe epilepsy and suggest that alternative approaches including the use of stronger glial promoters are needed to increase transgenic GS and EAAT2 expression to levels that may be required to affect seizure induction and propagation.

    Topics: Adenosine Kinase; Animals; Astrocytes; Epilepsy, Temporal Lobe; Excitatory Amino Acid Transporter 2; Gene Expression Regulation; Gene Targeting; Genetic Therapy; Genetic Vectors; Glutamate-Ammonia Ligase; Hippocampus; Kainic Acid; Male; Neuroglia; Neurons; Rats; Rats, Sprague-Dawley; Seizures; Transgenes

2014
Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: a first step in epileptogenesis?
    Glia, 2012, Volume: 60, Issue:1

    Astrogliosis and associated dysfunction of adenosine homeostasis are pathological hallmarks of the epileptic brain and thought to contribute to seizure generation in epilepsy. The authors hypothesized that astrogliosis-an early component of the epileptogenic cascade-might be linked to focal seizure onset. To isolate the contribution of astrogliosis to ictogenesis from other pathological events involved in epilepsy, the authors used a minimalistic model of epileptogenesis in mice, based on a focal onset status epilepticus triggered by intra-amygdaloid injection of kainic acid. The authors demonstrate acute neuronal cell loss restricted to the injected amygdala and ipsilateral CA3, followed 3 weeks later by focal astrogliosis and overexpression of the adenosine-metabolizing enzyme adenosine kinase (ADK). Using synchronous electroencephalographic recordings from multiple depth electrodes, the authors identify the KA-injected amygdala and ipsilateral CA3 as two independent foci for the initiation of non-synchronized electrographic subclinical seizures. Importantly, seizures remained focal and restricted to areas of ADK overexpression. However, after systemic application of a non-convulsive dose of an adenosine A(1) -receptor antagonist, seizures in amygdala and CA3 immediately synchronized and spread throughout the cortex, leading to convulsive seizures. This focal seizure phenotype remained stable over at least several weeks. We conclude that astrogliosis via disruption of adenosine homeostasis per se and in the absence of any other overt pathology, is associated with the emergence of spontaneous recurrent subclinical seizures, which remain stable over space and time. A secondary event, here mimicked by brain-wide disruption of adenosine signaling, is likely required to turn pre-existing subclinical seizures into a clinical seizure phenotype.

    Topics: Adenosine; Adenosine Kinase; Amygdala; Animals; Disease Models, Animal; Electroencephalography; Gene Expression Regulation; Gliosis; Hippocampus; Kainic Acid; Male; Mice; Mice, Inbred C57BL; Neuroglia; Seizures; Time Factors

2012
A ketogenic diet suppresses seizures in mice through adenosine A₁ receptors.
    The Journal of clinical investigation, 2011, Volume: 121, Issue:7

    A ketogenic diet (KD) is a high-fat, low-carbohydrate metabolic regimen; its effectiveness in the treatment of refractory epilepsy suggests that the mechanisms underlying its anticonvulsive effects differ from those targeted by conventional antiepileptic drugs. Recently, KD and analogous metabolic strategies have shown therapeutic promise in other neurologic disorders, such as reducing brain injury, pain, and inflammation. Here, we have shown that KD can reduce seizures in mice by increasing activation of adenosine A1 receptors (A1Rs). When transgenic mice with spontaneous seizures caused by deficiency in adenosine metabolism or signaling were fed KD, seizures were nearly abolished if mice had intact A1Rs, were reduced if mice expressed reduced A1Rs, and were unaltered if mice lacked A1Rs. Seizures were restored by injecting either glucose (metabolic reversal) or an A1R antagonist (pharmacologic reversal). Western blot analysis demonstrated that the KD reduced adenosine kinase, the major adenosine-metabolizing enzyme. Importantly, hippocampal tissue resected from patients with medically intractable epilepsy demonstrated increased adenosine kinase. We therefore conclude that adenosine deficiency may be relevant to human epilepsy and that KD can reduce seizures by increasing A1R-mediated inhibition.

    Topics: Adenosine Kinase; Adolescent; Adult; Animals; Anticonvulsants; Diet, Ketogenic; Electroencephalography; Epilepsy; Hippocampus; Humans; Mice; Mice, Knockout; Mice, Transgenic; Receptor, Adenosine A1; Seizures; Young Adult

2011
A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance.
    Epilepsia, 2010, Volume: 51, Issue:3

    Sudden unexpected death in epilepsy (SUDEP) is a significant cause of mortality in people with epilepsy. Two postulated causes for SUDEP, cardiac and respiratory depression, can both be explained by overstimulation of adenosine receptors. We hypothesized that SUDEP is a consequence of a surge in adenosine as a result of prolonged seizures combined with deficient adenosine clearance; consequently, blockade of adenosine receptors should prevent SUDEP. Here we induced impaired adenosine clearance in adult mice by pharmacologic inhibition of the adenosine-removing enzymes, adenosine kinase and deaminase. Combination of impaired adenosine clearance with kainic acid-induced seizures triggered sudden death in all animals. Most importantly, the adenosine receptor antagonist caffeine, when given after seizure onset, increased survival from 23.75 +/- 1.35 min to 54.86 +/- 6.59 min (p < 0.01). Our data indicate that SUDEP is due to overactivation of adenosine receptors and that caffeine treatment after seizure onset might be beneficial.

    Topics: Adenine; Adenosine; Adenosine Deaminase Inhibitors; Adenosine Kinase; Animals; Caffeine; Cause of Death; Death, Sudden; Disease Models, Animal; Enzyme Inhibitors; Epilepsy; Kainic Acid; Mice; Purinergic P1 Receptor Antagonists; Receptors, Purinergic P1; Risk Factors; Seizures; Survival Analysis; Tubercidin

2010
Adenosine A1 receptor blockage mediates theophylline-associated seizures.
    Epilepsia, 2010, Volume: 51, Issue:3

    Theophylline-associated seizures (TAS) often progress to prolonged or treatment-resistant convulsions. Theophylline is a nonselective adenosine receptor antagonist. Adenosine is an endogenous anticonvulsant that can terminate seizures. Fever and young age have been reported to be risk factors for TAS. To elucidate the mechanism of TAS, we investigated the effect of theophylline and adenosine receptor ligands on hyperthermia-induced seizures in juvenile rats. The treatment dose of theophylline or control saline was injected intraperitoneally 1 h before hyperthermia-induced seizures. The seizure threshold in the theophylline group was significantly lower and seizure duration was significantly longer than those in the control group. The addition of a selective adenosine A(1) receptor agonist and an adenosine kinase inhibitor completely counteracted the effects of theophylline. Moreover, a selective A(1) antagonist caused a significantly longer seizure duration compared with the control. These findings suggest that blockage of the adenosine A(1) receptor is the main cause of TAS.

    Topics: Adenosine; Adenosine A1 Receptor Agonists; Adenosine A1 Receptor Antagonists; Adenosine Kinase; Animals; Behavior, Animal; Body Temperature; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Electroencephalography; Enzyme Inhibitors; Hyperthermia, Induced; Injections, Intraperitoneal; Male; Rats; Rats, Inbred Lew; Seizures; Theophylline; Tubercidin

2010
Engineering human mesenchymal stem cells to release adenosine using miRNA technology.
    Methods in molecular biology (Clifton, N.J.), 2010, Volume: 650

    Adenosine is an important modulator of metabolic activity with powerful tissue- and cell-protective functions. Adenosine kinase (ADK), the major adenosine-regulating enzyme, is critical to adapt its intra- and extra-cellular levels in response to environmental changes. Lentiviral RNAi-mediated down-regulation of ADK in human mesenchymal stem cells (hMSCs) has therefore been considered an effective tool for engineering therapeutically effective adenosine-releasing cell grafts that could constitute patient-identical autologous implants for clinical application. We constructed lentiviral vectors that coexpress miRNA directed against ADK and an emerald green fluorescent protein (EmGFP) reporter gene. Following lentiviral transduction of hMSCs, we demonstrated up to 80% down-regulation of ADK and 98% transduction efficiency. Transduced hMSCs continued to express EmGFP after 4-6 consecutive passages and EmGFP-positive hMSC grafts survived in the hippocampal fissure of mouse brains and provided efficient adenosine-dependent neuroprotection in a mouse model of seizure-induced cell loss.

    Topics: Adenosine; Adenosine Kinase; Animals; Cell Line; Disease Models, Animal; Genetic Vectors; Humans; Lentivirus; Male; Mesenchymal Stem Cells; Mice; Mice, Inbred C57BL; MicroRNAs; RNA Interference; Seizures

2010
Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus.
    Neuropharmacology, 2009, Volume: 56, Issue:2

    Adenosine is an endogenous inhibitor of excitatory synaptic transmission with potent anticonvulsant properties in the mammalian brain. Given adenosine's important role in modulating synaptic transmission, several mechanisms exist to regulate its extracellular availability. One of these is the intracellular enzyme adenosine kinase (ADK), which phosphorylates adenosine to AMP. We have investigated the role that ADK plays in regulating the presence and effects of extracellular adenosine in area CA1 of rat hippocampal slices. Inhibition of ADK activity with 5'-iodotubercidin (IODO; 5 muM) raised extracellular adenosine, as measured with adenosine biosensors, and potently inhibited field excitatory post-synaptic potentials (fEPSPs) in an adenosine A(1)R-dependent manner. In nominally Mg(2+)-free aCSF, which facilitated the induction of electrically-evoked epileptiform activity, adenosine biosensor recordings revealed that seizures were accompanied by the transient release of adenosine. Under these conditions, IODO also inhibited the fEPSP and greatly suppressed epileptiform activity evoked by brief, high-frequency stimulation. During spontaneous seizures evoked by the A(1)R antagonist CPT, adenosine release was unaffected by IODO. This suggests that ADK activity does not limit activity-dependent adenosine release. On the basis of strong ADK immunoreactivity in GFAP-positive cells, astrocytes are likely to play a key role in regulating basal adenosine levels. It is this action of ADK on the basal adenosine tone that is permissive to seizure activity, and, by extension, other forms of activity-dependent neuronal activity such as synaptic plasticity.

    Topics: Adenosine; Adenosine Kinase; Animals; Animals, Newborn; Astrocytes; Electric Stimulation; Enzyme Inhibitors; Excitatory Postsynaptic Potentials; Glial Fibrillary Acidic Protein; Hippocampus; In Vitro Techniques; Rats; Rats, Sprague-Dawley; Seizures; Synapses; Theophylline; Time Factors; Tubercidin

2009
Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis.
    Epilepsy research, 2009, Volume: 84, Issue:2-3

    A novel generation of silk-based brain implants engineered to release adenosine was recently shown to provide robust seizure suppression in kindled rats. As a first step to develop stem cell-coated silk-based 3D-scaffolds for the therapeutic long-term delivery of adenosine we engineered human mesenchymal stem cells (hMSCs) to release adenosine. Here we demonstrate reduction of chronic seizures in a mouse model of CA3-selective epileptogenesis after infrahippocampal transplantation of adenosine-releasing hMSCs.

    Topics: Adenosine; Adenosine Kinase; Analysis of Variance; Animals; Disease Models, Animal; Electroencephalography; Green Fluorescent Proteins; Hippocampus; Humans; Indoles; Kainic Acid; Mesenchymal Stem Cell Transplantation; Mesenchymal Stem Cells; Mice; MicroRNAs; Seizures; Tissue Engineering; Transfection

2009
Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice.
    Neuron glia biology, 2008, Volume: 4, Issue:2

    The astrocytic enzyme adenosine kinase (ADK) is a key negative regulator of the brain's endogenous anticonvulsant adenosine. Astrogliosis with concomitant upregulation of ADK is part of the epileptogenic cascade and contributes to seizure generation. To molecularly dissect the respective roles of astrogliosis and ADK-expression for seizure generation, we used a transgenic approach to uncouple ADK-expression from astrogliosis: in Adk-tg mice the endogenous Adk-gene was deleted and replaced by a ubiquitously expressed Adk-transgene with novel ectopic expression in pyramidal neurons, resulting in spontaneous seizures. Here, we followed a unique approach to selectively injure the CA3 of these Adk-tg mice. Using this strategy, we had the opportunity to study astrogliosis and epileptogenesis in the absence of the endogenous astrocytic Adk-gene. After triggering epileptogenesis we demonstrate astrogliosis without upregulation of ADK, but lack of seizures, whereas matching wild-type animals developed astrogliosis with upregulation of ADK and spontaneous recurrent seizures. By uncoupling ADK-expression from astrogliosis, we demonstrate that global expression levels of ADK rather than astrogliosis per se contribute to seizure generation.

    Topics: Adenosine Kinase; Animals; Astrocytes; Brain; Cell Death; Chronic Disease; Epilepsy; Gliosis; Kainic Acid; Male; Mice; Mice, Knockout; Mice, Transgenic; Pyramidal Cells; Recurrence; Seizures; Severity of Illness Index; Status Epilepticus; Time Factors; Tissue Distribution; Transgenes; Up-Regulation

2008
Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice.
    The Journal of clinical investigation, 2008, Volume: 118, Issue:2

    Astrogliosis is a pathological hallmark of the epileptic brain. The identification of mechanisms that link astrogliosis to neuronal dysfunction in epilepsy may provide new avenues for therapeutic intervention. Here we show that astrocyte-expressed adenosine kinase (ADK), a key negative regulator of the brain inhibitory molecule adenosine, is a potential predictor and modulator of epileptogenesis. In a mouse model of focal epileptogenesis, in which astrogliosis is restricted to the CA3 region of the hippocampus, we demonstrate that upregulation of ADK and spontaneous focal electroencephalographic seizures were both restricted to the affected CA3. Furthermore, spontaneous seizures in CA3 were mimicked in transgenic mice by overexpression of ADK in this brain region, implying that overexpression of ADK without astrogliosis is sufficient to cause seizures. Conversely, after pharmacological induction of an otherwise epileptogenesis-precipitating acute brain injury, transgenic mice with reduced forebrain ADK were resistant to subsequent epileptogenesis. Likewise, ADK-deficient ES cell-derived brain implants suppressed astrogliosis, upregulation of ADK, and spontaneous seizures in WT mice when implanted after the epileptogenesis-precipitating brain injury. Our findings suggest that astrocyte-based ADK provides a critical link between astrogliosis and neuronal dysfunction in epilepsy.

    Topics: Adenosine Kinase; Animals; Astrocytes; Brain; Epilepsies, Partial; Kainic Acid; Male; Mice; Mice, Transgenic; Prognosis; Seizures

2008
Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants.
    Epilepsia, 2005, Volume: 46, Issue:8

    Stem cells and their derivatives have emerged as a promising tool for cell-based drug delivery because of (a) their unique ability to differentiate into various somatic cell types, (b) the virtually unlimited donor source for transplantation, and (c) the advantage of being amenable to a wide spectrum of genetic manipulations. Previously, adenosine-releasing embryonic stem (ES) cells have been generated by disruption of both alleles of adenosine kinase (Adk-/-). Lack of ADK did not compromise the cells' differentiation potential into embryoid bodies or glial precursor cells. The aim of the present study was to investigate the potential of differentiated Adk-/- ES cell progeny for seizure suppression by paracrine adenosine release.. To isolate paracrine effects of stem cell-derived implants from effects caused by network integration, ES cell-derived embryoid bodies and glial precursor cells were encapsulated into semipermeable polymer membranes and grafted into the lateral brain ventricles of kindled rats.. While seizure activity in kindled rats with wild-type Adk+/+ implants remained unaltered, rats with adenosine-releasing Adk-/- ES cell-derived implants displayed transient protection from convulsive seizures and a profound reduction of afterdischarge activity in EEG recordings. Long-term seizure suppression was precluded by limited viability of the encapsulated cells.. We thereby provide a proof-of-principle that Adk-/- ES cell-derived brain implants can suppress seizure activity by a paracrine mode of action. Adk-deficient stem cells therefore represent a potential tool for the treatment of epileptic disorders.

    Topics: Adenosine; Adenosine Kinase; Animals; Brain; Cell Differentiation; Cell Line; Drug Delivery Systems; Electroencephalography; Kindling, Neurologic; Paracrine Communication; Rats; Seizures; Stem Cell Transplantation; Stem Cells

2005
Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy.
    Proceedings of the National Academy of Sciences of the United States of America, 2001, Jun-19, Volume: 98, Issue:13

    Adenosine is an inhibitor of neuronal activity in the brain. The local release of adenosine from grafted cells was evaluated as an ex vivo gene therapy approach to suppress synchronous discharges and epileptic seizures. Fibroblasts were engineered to release adenosine by inactivating the adenosine-metabolizing enzymes adenosine kinase and adenosine deaminase. After encapsulation into semipermeable polymers, the cells were grafted into the brain ventricles of electrically kindled rats, a model of partial epilepsy. Grafted rats provided a nearly complete protection from behavioral seizures and a near-complete suppression of afterdischarges in electroencephalogram recordings, whereas the full tonic-clonic convulsions in control rats remained unaltered. Thus, the local release of adenosine resulting in adenosine concentrations <25 nM at the site of action is sufficient to suppress seizure activity and, therefore, provides a potential therapeutic principle for the treatment of drug-resistant partial epilepsies.

    Topics: Adenosine; Adenosine Deaminase; Adenosine Kinase; Aggression; Animals; Brain; Cell Line; Cell Transplantation; Cricetinae; Epilepsies, Partial; Exploratory Behavior; Fibroblasts; Genetic Therapy; Kindling, Neurologic; Male; Mice; Mice, Knockout; Motor Activity; Phenytoin; Rats; Rats, Inbred Strains; Seizures; Social Behavior; Xanthines

2001
Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues.
    Journal of medicinal chemistry, 2000, Jul-27, Volume: 43, Issue:15

    Adenosine receptor agonists produce a wide variety of therapeutically useful pharmacologies. However, to date they have failed to undergo successful clinical development due to dose-limiting side effects. Adenosine kinase inhibitors (AKIs) represent an alternative strategy, since AKIs may raise local adenosine levels in a more site- and event-specific manner and thereby elicit the desired pharmacology with a greater therapeutic window. Starting with 5-iodotubercidin (IC50 = 0.026 microM) and 5'-amino-5'-deoxyadenosine (IC50 = 0.17 microM) as lead inhibitors of the isolated human AK, a variety of pyrrolo[2,3-d]pyrimidine nucleoside analogues were designed and prepared by coupling 5-substituted-4-chloropyrrolo[2,3-d]pyrimidine bases with ribose analogues using the sodium salt-mediated glycosylation procedure. 5'-Amino-5'-deoxy analogues of 5-bromo- and 5-iodotubercidins were found to be the most potent AKIs reported to date (IC50S < 0.001 microM). Several potent AKIs were shown to exhibit anticonvulsant activity in the rat maximal electric shock (MES) induced seizure assay.

    Topics: Adenosine Kinase; Animals; Anticonvulsants; Electroshock; Enzyme Inhibitors; Humans; Male; Rats; Recombinant Proteins; Seizures; Structure-Activity Relationship; Tubercidin

2000
Adenosine kinase inhibitors. 2. Synthesis, enzyme inhibition, and antiseizure activity of diaryltubercidin analogues.
    Journal of medicinal chemistry, 2000, Jul-27, Volume: 43, Issue:15

    In the preceding article (Ugarkar et al. J. Med. Chem. 2000, 43) we reported that analogues of tubercidin are potent adenosine kinase (AK) inhibitors with antiseizure activity in the rat maximum electroshock (MES) model. Despite the discovery of several highly potent AK inhibitors (AKIs), e.g., 5'-amino-5'-deoxy- 5-iodotubercidin (1c) (IC50 = 0.0006 microM), no compounds were identified that exhibited a safety, efficacy, and side effect profile suitable for further development. In this article, we demonstrate that substitution of the tubercidin molecule with aromatic rings at the N4- and the C5-positions not only retains AKI potency but also improves in vivo activity. Synthesis of such compounds entailed transformation of 4-arylamino-5-iodotubercidin analogues to their corresponding 5-aryl derivatives via the Suzuki reaction. Alternatively, 4-N-arylamino-5-arylpyrrolo[2,3-d]pyrimidine bases were constructed and then glycosylated with appropriately protected alpha-ribofuranosyl chlorides using a phase-transfer catalyst. Several compounds exhibited potent activity in the rat MES seizure assay with ED50s < or = 2.0 mg/kg, ip, and showed relatively mild side effects.

    Topics: Adenosine Kinase; Animals; Anticonvulsants; Enzyme Inhibitors; Humans; Magnetic Resonance Spectroscopy; Rats; Recombinant Proteins; Seizures; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Tubercidin

2000
Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 289, Issue:3

    Adenosine levels increase at seizure foci as part of a postulated endogenous negative feedback mechanism that controls seizure activity through activation of A1 adenosine receptors. Agents that amplify this site- and event-specific surge of adenosine could provide antiseizure activity similar to that of adenosine receptor agonists but with fewer dose-limiting side effects. Inhibitors of adenosine kinase (AK) were examined because AK is normally the primary route of adenosine metabolism. The AK inhibitors 5'-amino-5'-deoxyadenosine, 5-iodotubercidin, and 5'-deoxy-5-iodotubercidin inhibited maximal electroshock (MES) seizures in rats. Several structural classes of novel AK inhibitors were identified and shown to exhibit similar activity, including a prototype inhibitor, 4-(N-phenylamino)-5-phenyl-7-(5'-deoxyribofuranosyl)pyrrolo[2, 3-d]pyrimidine (GP683; MES ED50 = 1.1 mg/kg). AK inhibitors also reduced epileptiform discharges induced by removal of Mg2+ in a rat neocortical preparation. Overall, inhibitors of adenosine deaminase or of adenosine transport were less effective. The antiseizure activities of GP683 in the in vivo and in vitro preparations were reversed by the adenosine receptor antagonists theophylline and 8-(p-sulfophenyl)theophylline. GP683 showed little or no hypotension or bradycardia and minimal hypothermic effect at anticonvulsant doses. This improved side effect profile contrasts markedly with the profound hypotension, bradycardia, and hypothermia and greater inhibition of motor function observed with the adenosine receptor agonist N6-cyclopentyladenosine and opens the way to clinical evaluation of AK inhibitors as a novel, adenosine-based approach to anticonvulsant therapy.

    Topics: Adenosine; Adenosine Kinase; Animals; Anticonvulsants; Cattle; Cells, Cultured; Deoxyadenosines; Electroshock; Endothelium, Vascular; Enzyme Inhibitors; Male; Microcirculation; Motor Activity; Neocortex; Pyrimidines; Radioligand Assay; Rats; Rats, Inbred Strains; Recombinant Proteins; Seizures; Structure-Activity Relationship; Tubercidin

1999
Manipulation of endogenous adenosine in the rat prepiriform cortex modulates seizure susceptibility.
    The Journal of pharmacology and experimental therapeutics, 1993, Volume: 264, Issue:3

    A1 adenosine receptors in the rat prepiriform cortex play an important role in the inhibition of bicuculline methiodide-induced convulsions. In the present study we evaluated manipulation of endogenous adenosine in this brain area as a strategy to effect seizure suppression. All compounds evaluated were unilaterally microinjected into the rat prepiriform cortex. Administration of exogenous adenosine afforded a dose-dependent protection (ED50 = 48.1 +/- 8.4 nmol) against bicuculline methiodide-induced seizures, and these anticonvulsant effects were significantly potentiated by treatment with an adenosine kinase inhibitor, 5'-amino-5'-deoxyadenosine; by the adenosine transport blockers, dilazep or nitrobenzylthioinosine 5'-monophosphate; and by an adenosine deaminase inhibitor, 2'-deoxycoformycin. When administered alone, 5'-amino-5'-deoxyadenosine, 5'-iodotubercidin and dilazep were found to be highly efficacious as anticonvulsants with respective ED50 values of 2.6 +/- 0.8, 4.0 +/- 2.7 and 5.6 +/- 1.5 nmol. In contrast, 2'-deoxycoformycin was both less potent and less efficacious. These results suggest that accumulation of endogenous adenosine may contribute to seizure suppression, and that adenosine kinase and adenosine transport may play a pivotal role in the regulation of extracellular levels of adenosine in the central nervous system. The adenosine antagonist, 8-(p-sulfophenyl)theophylline, increased markedly the severity of bicuculline methiodide-induced seizures. Moreover, reduction of extracellular adenosine formation by a focal injection of an ecto-5'-nucleotidase inhibitor, alpha, beta-methyleneadenosine diphosphate, produced generalized seizures (ED50 = 37.3 +/- 22.7 nmol). Together the proconvulsant effect of an adenosine receptor antagonist and the convulsant action of an ecto-5'-nucleotidase inhibitor further support the role of endogenous adenosine as a tonically active antiepileptogenic substance in the rat prepiriform cortex.

    Topics: Adenosine; Adenosine Deaminase Inhibitors; Adenosine Diphosphate; Adenosine Kinase; Animals; Bicuculline; Cerebral Cortex; Male; Pentostatin; Rats; Rats, Sprague-Dawley; Receptors, Purinergic; Seizures; Theophylline; Thioinosine

1993