adenosine-kinase has been researched along with Myocardial-Infarction* in 4 studies
4 other study(ies) available for adenosine-kinase and Myocardial-Infarction
Article | Year |
---|---|
Adenosine kinase promotes post-infarction cardiac repair by epigenetically maintaining reparative macrophage phenotype.
Pro-inflammatory and reparative macrophages are crucial in clearing necrotic myocardium and promoting cardiac repair after myocardial infarction (MI), respectively. Extracellular adenosine has been demonstrated to modulate macrophage polarization through adenosine receptors. However, the role of intracellular adenosine in macrophage polarization has not been explored and adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels. Here, we aimed to elucidate the role of ADK in macrophage polarization and its subsequent impact on MI. We demonstrated that ADK was upregulated in bone marrow-derived macrophages (BMDMs) after IL-4 treatment and was highly expressed in the infarct area at day 7 post-MI, especially in macrophages. Compared with wild-type mice, myeloid-specific Adk knockout mice showed increased infarct size, limited myofibroblast differentiation, reduced collagen deposition and more severe cardiac dysfunction after MI, which was related to impaired reparative macrophage phenotype in MI tissue. We found that ADK deletion or inhibition significantly decreased the expression of reparative genes, such as Arg1, Ym1, Fizz1, and Cd206 in BMDMs after IL-4 treatment. The increased intracellular adenosine due to Adk deletion inhibited transmethylation reactions and decreased the trimethylation of H3K4 in BMDMs after IL-4 treatment. Mechanistically, we demonstrated that Adk deletion suppressed reparative macrophage phenotype through decreased IRF4 expression, which resulted from reduced levels of H3K4me3 on the Irf4 promotor. Together, our study reveals that ADK exerts a protective effect against MI by promoting reparative macrophage polarization through epigenetic mechanisms. Topics: Adenosine Kinase; Animals; Interleukin-4; Macrophages; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Phenotype | 2023 |
Cardioprotection following adenosine kinase inhibition in rat hearts.
Adenosine kinase phosphorylates adenosine to AMP, the primary pathway for adenosine metabolism under basal conditions. Inhibition of adenosine kinase results in a site-specific increase in interstitial adenosine. Using a rat model of myocardial infarction, we examined the protective effects of adenosine kinase inhibition. Male Sprague-Dawley rats underwent 30 min regional occlusion followed by 90 min reperfusion. Infarct size, expressed as a percent of the area-at-risk, IS/AAR(%), was 58.0 +/- 2.1 % in untreated rats. Pretreatment with the adenosine kinase inhibitor, 5-iodotubercidin (1 mg/kg), limited infarct development to 37.5+/-3.7% (P < 0.001). The A(1) adenosine receptor (A(1)AR) antagonist, DPCPX (100 microg/kg), abolished the infarct-sparing effect of 5-iodotubercidin (IS, 62.8 +/- 1.3%). Similarly, the A(3) adenosine receptor (A(3)AR) antagonist, MRS-1523 (2 mg/kg), and the delta-opioid receptor (DOR) antagonist, BNTX, (1 mg/kg) abolished the reduction of IS produced by iodotubercidin. Pretreatment with the ROS scavenger, 2-MPG (20 mg/kg), or the PKC-delta antagonist, rottlerin (0.3 mg/kg) also abolished iodotubercidin-mediated cardioprotection. Furthermore, pretreatment with 5-HD, a mitochondrial K(ATP) (mitoK(ATP)) channel inhibitor, but not the sarcolemmal K(ATP) channel blocker, HMR-1098, abrogated the beneficial effects of adenosine kinase inhibition (IS, 59.5 +/- 3.8%). These data suggest that inhibition of adenosine kinase is effective in reducing infarct development via A(1)AR, A(3)AR and DOR activation. Data also suggest that this protection is mediated via ROS, PKC-delta and mitoK(ATP) channels. Topics: Adenosine Kinase; Animals; Enzyme Inhibitors; Heart Rate; Male; Myocardial Infarction; Myocardial Ischemia; Potassium Channels; Protective Agents; Protein Kinase C; Protein Kinase C-delta; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, G-Protein-Coupled; Signal Transduction | 2005 |
Preservation of global cardiac function in the rabbit following protracted ischemia/reperfusion using monophosphoryl lipid A (MLA).
Monophosphoryl lipid A (MLA), a derivative of the minimal substructure of lipopolysaccharide (lipid A) possesses immunomodulatory activity of the parent lipid A yet enjoys reduced toxicity. It has previously been reported that pretreatment with MLA reduces myocardial infarct size and stunning in dogs following ischemia and reperfusion. The aim of this study was to evaluate the ability of monophosphoryl lipid A (MLA) to preserve global cardiac function and peripheral hemodynamics in a rabbit model of prolonged regional ischemia (90 min), and reperfusion (6 h). An evaluation of potential mechanisms by which MLA may preserve cardiac function was also undertaken. Single dose pretreatment with MLA (35 micrograms/kg i.v.) 24 h prior to ischemia resulted in significant improvement in left ventricular developed pressure, dP/dt, rate-pressure product and mean arterial pressure during reperfusion (P < 0.05 v control). Although in this model of prolonged ischemia MLA pretreatment did not reduce infarct size (54.5 +/- 11.4% in control v 63.3 +/- 8.3% in MLA, P = N.S.), evaluation of myocardial adenylate and adenosine catabolite pools at the end of ischemia indicated a preservation of ATP and ADP and a decreased production of downstream adenosine catabolites including inosine, xanthine and uric acid. Adenosine kinase, but not 5'-nucleotidase (5'-NTase) or adenosine deaminase activity determined following reperfusion was 76% and 60% higher (P < 0.05) in non-risk and post-ischemic myocardium of MLA pretreated rabbits compared with controls. Although there was a trend toward lower tissue myeloperoxidase activity in post-ischemic myocardium from treated rabbits, the results were not significantly different from control animals. These results suggest that a 24-h pretreatment with MLA, without further treatment during ischemia or reperfusion was associated with: (1) preservation of global myocardial function during reperfusion; (2) preservation of myocardial high energy adenylates and reduced formation of adenosine catabolites during ischemia; (3) elevated myocardial adenosine kinase activity. Increased recycling of adenosine to phosphorylated nucleotides may result from MLA's affect on adenosine kinase, which could explain the drugs effect on adenylate and adenosine metabolite pools. Topics: 5'-Nucleotidase; Adenine Nucleotides; Adenosine Deaminase; Adenosine Kinase; Adjuvants, Immunologic; Analysis of Variance; Animals; Blood Pressure; Carbohydrate Sequence; Coronary Vessels; Energy Metabolism; Female; Heart; Heart Rate; Hemodynamics; Lipid A; Molecular Sequence Data; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion; Myocardium; Peroxidase; Purines; Rabbits; Reference Values; Ventricular Function, Left | 1996 |
Cardioprotection with ischemic preconditioning and MLA: role of adenosine-regulating enzymes?
Both ischemic preconditioning and pretreatment with the endotoxin derivative monophosphoryl lipid A (MLA) protect the heart against infarction, yet the cellular mechanisms responsible for the cardioprotection achieved with either intervention are unknown. Using pentobarbital-anesthetized dogs, we tested the hypothesis that increased activity of 5'-nucleotidase (5'-NT), the enzyme that catalyzes the formation of adenosine from AMP, may play a role. Twenty-two dogs underwent 1 h of coronary occlusion and 4 h of reperfusion: eight controls received no intervention, seven animals were preconditioned with four 5-min episodes of brief ischemia, and seven received MLA (35 micrograms/kg iv) 24 h previously. Collateral blood flow was measured by injection of radiolabeled microspheres, infarct size was delineated by tetrazolium staining, and myocardial 5'-NT activities were measured by quantifying the release of adenosine from AMP. Despite comparable values of collateral blood flow in all groups, infarct size was reduced in preconditioned and MLA-treated dogs vs. controls. In addition, 5'-NT activities were increased throughout the heart with preconditioning and MLA treatment. However, single and multivariate regression analyses revealed no correlation between infarct size and 5'-NT activities for either treatment group. In fact, in the preconditioned cohort, animals with the highest enzyme activities developed the largest infarcts. This dissociation between infarct size and 5'-NT suggests that increased activity of 5'-NT is not the mechanism by which preconditioning or MLA treatment protects the canine heart against infarction. Topics: 5'-Nucleotidase; Adenosine; Adenosine Kinase; Adenosine Triphosphate; Adjuvants, Immunologic; Animals; Coronary Circulation; Dogs; Energy Metabolism; Enzymes; Hemodynamics; Ischemic Preconditioning, Myocardial; Lipid A; Myocardial Infarction; Myocardium; Phosphates; Regional Blood Flow | 1996 |